Math 310 Homework 6 Solutions

Chapter 3, Section 3

- 1. (a) The vectors are LI because they are not multiples of each other.
 - (c) The vectors are not LI. If we consider the system of equations $A\mathbf{x} = \mathbf{0}$ where

$$A = \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 2\\ 1 & 3 & 4 \end{bmatrix}$$

we know that there are (at most) 2 pivots in the row reduced form of A. Therefore, there will be (at least) one free variable in the set of all solutions to $A\mathbf{x} = \mathbf{0}$ which means that there are infinite solutions. Thus, we can find scalars c_1, c_2, c_3 not all zero such that $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{0}$.

2. (a) Let $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3] = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$. Since det $A = 1, A^{-1}$ exists and $\mathbf{x} = A^{-1}\mathbf{0} = \mathbf{0}$ is the only

solution to $A\mathbf{x} = \mathbf{0}$. Therefore, the vectors are LI.

(b) Let $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{v}_4] = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 1 & 3 \end{bmatrix}$. Since the first three vectors are LI (see part (a)), the row reduced form of A will contain a pivot in every row. Therefore, x_4 will be a free variable in

the set of all solutions to $A\mathbf{x} = \mathbf{0}$ which means that there are infinite solutions to $A\mathbf{x} = \mathbf{0}$. Thus, the vectors are not LI.

- (c) The vectors are not LI.
- 6. (a) It's easiest to use the Wronskian here:

$$W = \begin{vmatrix} 1 & x^2 & x^2 - 2 \\ 0 & 2x & 2x \\ 0 & 2 & 2 \end{vmatrix} = 0$$

Since W = 0 for all x, the set of functions are not LI.

(b)

$$W = \begin{vmatrix} 2 & x^2 & x & 2x+3 \\ 0 & 2x & 1 & 2 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{vmatrix} = 0$$

Since W = 0 for all x, the set of functions are not LI.

7. (a)

$$W = \begin{vmatrix} \cos \pi x & \sin \pi x \\ -\pi \sin \pi x & \pi \cos \pi x \end{vmatrix} = \pi$$

Since $W \neq 0$ for all x, the functions are LI.

(b)

$$W = \begin{vmatrix} x^{3/2} & x^{5/2} \\ (3/2)x^{1/2}x & (5/2)x^{3/2} \end{vmatrix} = x^3$$

Since $W \neq 0$ for x = 1, the functions are LI.

(c)

$$W = \begin{vmatrix} 1 & e^{x} + e^{-x} & e^{x} - e^{-x} \\ 0 & e^{x} - e^{-x} & e^{x} + e^{-x} \\ 0 & e^{x} + e^{-x} & e^{x} - e^{-x} \end{vmatrix} = -4$$

Since $W \neq 0$ for all x, the functions are LI.

11. Let's say we have a set of n vectors one of which is the zero vector: $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{n-1}, \mathbf{0}}$. Then we can find a set of scalars $c_1, c_2, \dots, c_{n-1}, c_n$ not all zero such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\ldots+c_{n-1}\mathbf{v}_n+c_n\mathbf{0}=\mathbf{0}$$

by choosing c_n to be anything but 0. Therefore, the set of vectors in S are LD.

Chapter 3, Section 4

- 3. (a) \mathbf{x}_1 and \mathbf{x}_2 are LI because they are not multiples of each other. We know by Theorem 3.4.3 that any set of 2 LI vectors spans \mathbb{R}^2 since dim $\mathbb{R}^2 = 2$. Therefore, \mathbf{x}_1 and \mathbf{x}_2 form a basis for \mathbb{R}^2 .
 - (b) $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ are LD because \mathbf{x}_3 can be written as a linear combination of \mathbf{x}_1 and \mathbf{x}_2
 - (c) The dimension of $V = \text{Span}\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ is 2 since \mathbf{x}_1 and \mathbf{x}_2 form a basis for V.
- 5. (a) $\mathbf{x}_3 = 4\mathbf{x}_1 2\mathbf{x}_2 \Rightarrow \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ are LD
 - (b) \mathbf{x}_1 and \mathbf{x}_2 are not multiples of each other \Rightarrow they are LI
 - (c) The dimension of $V = \text{Span}\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ is 2 since \mathbf{x}_1 and \mathbf{x}_2 are LI and form a spanning set for V.
 - (d) V is a plane that goes through the origin.

8. (a) Consider
$$A = [\mathbf{x}_1 \ \mathbf{x}_2] = \begin{bmatrix} 1 & 3 \\ 1 & -1 \\ 1 & 4 \end{bmatrix}$$
. The row reduced echelon form of A is:

$$\begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$\operatorname{rref}(A) = \begin{bmatrix} 1 & 0\\ 0 & 1\\ 0 & 0 \end{bmatrix}$$

Since we have a row of zeros, we cannot write every vector $\mathbf{b} \in \mathbb{R}^3$ as a linear combination of \mathbf{x}_1 and \mathbf{x}_2 . Therefore, \mathbf{x}_1 and \mathbf{x}_2 do not span \mathbb{R}^3 .

- (b) $X = [\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3]$ would have to be nonsingular in order for $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ to form a basis for \mathbb{R}^3 .
- (c) Let's choose $\mathbf{x}_3 = [1, 0, 0]^T$. The vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ are LI since:

$$\begin{vmatrix} 1 & 3 & 1 \\ 1 & -1 & 0 \\ 1 & 4 & 0 \end{vmatrix} = 5$$

implies that $\mathbf{x} = 0$ is the only solution to $A\mathbf{x} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3]\mathbf{x} = \mathbf{0}$.

- 10. We know that dim $\mathbb{R}^3 = 3$ so any basis for \mathbb{R}^3 must contain 3 LI vectors. Therefore, any 3 LI vectors chosen from the list will form a basis. One such set is $\{\mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5\}$.
- 14. (a) We are told that the set $\{x, x 1, x^2 + 1\}$ spans \mathbb{R}^3 . Now the question is whether or not these are also LI. If so, they will form a basis for $V = \text{Span}\{x, x 1, x^2 + 1\}$. Let's use the Wronskian:

$$W = \begin{vmatrix} x & x-1 & x^2+1 \\ 1 & 1 & 2x \\ 0 & 0 & 2 \end{vmatrix} = 2$$

Since $W \neq 0$ for all x, the functions are LI. Therefore, they form a basis for V.

(b) We are told that the set $\{x, x - 1, x^2 + 1, x^2 - 1\}$ spans \mathbb{R}^3 . Now the question is whether or not these are also LI. If so, they will form a basis for $V = \text{Span}\{x, x - 1, x^2 + 1, x^2 - 1\}$. Let's use the Wronskian:

$$W = \begin{vmatrix} x & x-1 & x^2+1 & x^2-1 \\ 1 & 1 & 2x & 2x \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{vmatrix} = 0$$

Since W = 0 for all x, the functions are not LI. Therefore, they cannot form a basis for V. If we get rid of $x^2 - 1$, we get the same set of functions as in part (a) which we know are LI. They also span V. Therefore, they form a basis for V and dim V = 3.