Math 310 Homework 6 Solutions

Chapter 3, Section 3

1. (a) The vectors are LI because they are not multiples of each other.
(c) The vectors are not LI. If we consider the system of equations $A \mathbf{x}=\mathbf{0}$ where

$$
A=\left[\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right]=\left[\begin{array}{rrr}
-2 & 1 & 2 \\
1 & 3 & 4
\end{array}\right]
$$

we know that there are (at most) 2 pivots in the row reduced form of A. Therefore, there will be (at least) one free variable in the set of all solutions to $A \mathbf{x}=\mathbf{0}$ which means that there are infinite solutions. Thus, we can find scalars c_{1}, c_{2}, c_{3} not all zero such that $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=\mathbf{0}$.
2. (a) Let $A=\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$. Since $\operatorname{det} A=1, A^{-1}$ exists and $\mathbf{x}=A^{-1} \mathbf{0}=\mathbf{0}$ is the only solution to $A \mathbf{x}=\mathbf{0}$. Therefore, the vectors are LI.
(b) Let $A=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} & \mathbf{v}_{4}\end{array}\right]=\left[\begin{array}{llll}1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 1 & 3\end{array}\right]$. Since the first three vectors are LI (see part (a)), the row reduced form of A will contain a pivot in every row. Therefore, x_{4} will be a free variable in the set of all solutions to $A \mathbf{x}=\mathbf{0}$ which means that there are infinite solutions to $A \mathbf{x}=\mathbf{0}$. Thus, the vectors are not LI.
(c) The vectors are not LI.
6. (a) It's easiest to use the Wronskian here:

$$
W=\left|\begin{array}{ccc}
1 & x^{2} & x^{2}-2 \\
0 & 2 x & 2 x \\
0 & 2 & 2
\end{array}\right|=0
$$

Since $W=0$ for all x, the set of functions are not LI.
(b)

$$
W=\left|\begin{array}{cccc}
2 & x^{2} & x & 2 x+3 \\
0 & 2 x & 1 & 2 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right|=0
$$

Since $W=0$ for all x, the set of functions are not LI.
7. (a)

$$
W=\left|\begin{array}{cc}
\cos \pi x & \sin \pi x \\
-\pi \sin \pi x & \pi \cos \pi x
\end{array}\right|=\pi
$$

Since $W \neq 0$ for all x, the functions are LI.
(b)

$$
W=\left|\begin{array}{cc}
x^{3 / 2} & x^{5 / 2} \\
(3 / 2) x^{1 / 2} x & (5 / 2) x^{3 / 2}
\end{array}\right|=x^{3}
$$

Since $W \neq 0$ for $x=1$, the functions are LI.
(c)

$$
W=\left|\begin{array}{ccc}
1 & e^{x}+e^{-x} & e^{x}-e^{-x} \\
0 & e^{x}-e^{-x} & e^{x}+e^{-x} \\
0 & e^{x}+e^{-x} & e^{x}-e^{-x}
\end{array}\right|=-4
$$

Since $W \neq 0$ for all x, the functions are LI.
11. Let's say we have a set of n vectors one of which is the zero vector: $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n-1}, \mathbf{0}\right\}$. Then we can find a set of scalars $c_{1}, c_{2}, \ldots, c_{n-1}, c_{n}$ not all zero such that

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{n-1} \mathbf{v}_{n}+c_{n} \mathbf{0}=\mathbf{0}
$$

by choosing c_{n} to be anything but 0 . Therefore, the set of vectors in S are LD.

Chapter 3, Section 4

3. (a) \mathbf{x}_{1} and \mathbf{x}_{2} are LI because they are not multiples of each other. We know by Theorem 3.4.3 that any set of $2 L I$ vectors spans \mathbb{R}^{2} since $\operatorname{dim} \mathbb{R}^{2}=2$. Therefore, \mathbf{x}_{1} and \mathbf{x}_{2} form a basis for \mathbb{R}^{2}.
(b) $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ are LD because \mathbf{x}_{3} can be written as a linear combination of \mathbf{x}_{1} and \mathbf{x}_{2}
(c) The dimension of $V=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ is 2 since \mathbf{x}_{1} and \mathbf{x}_{2} form a basis for V.
4. (a) $\mathbf{x}_{3}=4 \mathbf{x}_{1}-2 \mathbf{x}_{2} \Rightarrow \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ are LD
(b) \mathbf{x}_{1} and \mathbf{x}_{2} are not multiples of each other \Rightarrow they are LI
(c) The dimension of $V=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ is 2 since \mathbf{x}_{1} and \mathbf{x}_{2} are LI and form a spanning set for V.
(d) V is a plane that goes through the origin.
5. (a) Consider $A=\left[\begin{array}{ll}\mathbf{x}_{1} & \mathbf{x}_{2}\end{array}\right]=\left[\begin{array}{rr}1 & 3 \\ 1 & -1 \\ 1 & 4\end{array}\right]$. The row reduced echelon form of A is:

$$
\operatorname{rref}(A)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

Since we have a row of zeros, we cannot write every vector $\mathbf{b} \in \mathbb{R}^{3}$ as a linear combination of \mathbf{x}_{1} and \mathbf{x}_{2}. Therefore, \mathbf{x}_{1} and \mathbf{x}_{2} do not span \mathbb{R}^{3}.
(b) $X=\left[\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3}\right]$ would have to be nonsingular in order for $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ to form a basis for \mathbb{R}^{3}.
(c) Let's choose $\mathbf{x}_{3}=[1,0,0]^{T}$. The vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ are LI since:

$$
\left|\begin{array}{rrr}
1 & 3 & 1 \\
1 & -1 & 0 \\
1 & 4 & 0
\end{array}\right|=5
$$

implies that $\mathbf{x}=0$ is the only solution to $A \mathbf{x}=\left[\begin{array}{lll}\mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3}\end{array}\right] \mathbf{x}=\mathbf{0}$.
10. We know that $\operatorname{dim} \mathbb{R}^{3}=3$ so any basis for \mathbb{R}^{3} must contain 3 LI vectors. Therefore, any 3 LI vectors chosen from the list will form a basis. One such set is $\left\{\mathbf{x}_{3}, \mathbf{x}_{4}, \mathbf{x}_{5}\right\}$.
14. (a) We are told that the set $\left\{x, x-1, x^{2}+1\right\}$ spans \mathbb{R}^{3}. Now the question is whether or not these are also LI. If so, they will form a basis for $V=\operatorname{Span}\left\{x, x-1, x^{2}+1\right\}$. Let's use the Wronskian:

$$
W=\left|\begin{array}{ccc}
x & x-1 & x^{2}+1 \\
1 & 1 & 2 x \\
0 & 0 & 2
\end{array}\right|=2
$$

Since $W \neq 0$ for all x, the functions are LI. Therefore, they form a basis for V.
(b) We are told that the set $\left\{x, x-1, x^{2}+1, x^{2}-1\right\}$ spans \mathbb{R}^{3}. Now the question is whether or not these are also LI. If so, they will form a basis for $V=\operatorname{Span}\left\{x, x-1, x^{2}+1, x^{2}-1\right\}$. Let's use the Wronskian:

$$
W=\left|\begin{array}{cccc}
x & x-1 & x^{2}+1 & x^{2}-1 \\
1 & 1 & 2 x & 2 x \\
0 & 0 & 2 & 2 \\
0 & 0 & 0 & 0
\end{array}\right|=0
$$

Since $W=0$ for all x, the functions are not LI. Therefore, they cannot form a basis for V. If we get rid of $x^{2}-1$, we get the same set of functions as in part (a) which we know are LI. They also span V. Therefore, they form a basis for V and $\operatorname{dim} V=3$.

