
Math 310 Homework 7 Solutions

Chapter 3, Section 5
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3. (a) The transformation equation is V c = Ud where

V =




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 , U =


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The transformation matrix from [v1,v2] to [u1,u2] is:

S = U−1V
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4. The transformation matrix from the standard basis to E is:

U−1 =





5 3

3 2



 =
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Then we have:

xE = U−1x =


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yE = U−1y =




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zE = U−1z =


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

Chapter 3, Section 6

2. (a) We construct a matrix A whose columns are the given vectors:

A =





1 2 −3
−2 −2 3

2 4 6





Since detA = 24 we know that x = 0 is the only solution to Ax = 0. Therefore, the vectors are
LI. They also form a spanning set for the subspace and, thus, form a basis for it. The dimension
of the subspace is 3 since there are 3 vectors in the basis.
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(b) The same argument is made here as in (a) (with det A = −3).

3. (a) The reduced row echelon form of A is:

U =





1 2 0 5 −3 0
0 0 1 −1 2 0
0 0 0 0 0 1





Columns 2, 4, and 5 correspond to the free variables.

Col 2 = 2Col 1

Col 4 = 5Col 1 − Col 3

Col 5 = −3Col 1 + 2Col 3

(b) Columns 1, 3, and 6 of A correspond to the lead variables of U . The remaining columns of A can
be written as linear combinations of Columns 1, 3, and 6 as follows:

Col 2 = 2Col 1

Col 4 = 5Col 1 − Col 3

Col 5 = −3Col 1 + 2Col 3

which are the same equations we had in (a).

4. (c) Since detA = 5, A−1 exists and the solution to Ax = b is x = A−1b. Thus, b is in the column
space of A and Ax = b is consistent.

(d) b cannot be written as a linear combination of the columns of A. Therefore, b is not in the
column space of A and the system Ax = b is not consistent.

5. (a) In (c), there will only be one solution.
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