Math 310 Homework 7 Solutions

Chapter 3, Section 5

1. (a) $U=\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]$
2. (a) $U^{-1}=\left[\begin{array}{rr}\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2}\end{array}\right]$
3. (a) The transformation equation is $V \mathbf{c}=U \mathbf{d}$ where

$$
V=\left[\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right], U=\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right]
$$

The transformation matrix from $\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]$ to $\left[\mathbf{u}_{1}, \mathbf{u}_{2}\right]$ is:

$$
\begin{aligned}
& S=U^{-1} V \\
& S=\left[\begin{array}{rr}
\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right] \\
& S=\left[\begin{array}{rr}
\frac{5}{2} & \frac{7}{2} \\
-\frac{1}{2} & -\frac{1}{2}
\end{array}\right]
\end{aligned}
$$

4. The transformation matrix from the standard basis to E is:

$$
U^{-1}=\left[\begin{array}{ll}
5 & 3 \\
3 & 2
\end{array}\right]=\left[\begin{array}{rr}
2 & -3 \\
-3 & 5
\end{array}\right]
$$

Then we have:

$$
\begin{aligned}
& \mathbf{x}_{E}=U^{-1} \mathbf{x}=\left[\begin{array}{r}
-1 \\
2
\end{array}\right] \\
& \mathbf{y}_{E}=U^{-1} \mathbf{y}=\left[\begin{array}{r}
5 \\
-8
\end{array}\right] \\
& \mathbf{z}_{E}=U^{-1} \mathbf{z}=\left[\begin{array}{r}
-1 \\
5
\end{array}\right]
\end{aligned}
$$

Chapter 3, Section 6

2. (a) We construct a matrix A whose columns are the given vectors:

$$
A=\left[\begin{array}{rrr}
1 & 2 & -3 \\
-2 & -2 & 3 \\
2 & 4 & 6
\end{array}\right]
$$

Since $\operatorname{det} A=24$ we know that $\mathbf{x}=\mathbf{0}$ is the only solution to $A \mathbf{x}=\mathbf{0}$. Therefore, the vectors are LI. They also form a spanning set for the subspace and, thus, form a basis for it. The dimension of the subspace is 3 since there are 3 vectors in the basis.
(b) The same argument is made here as in (a) (with $\operatorname{det} A=-3$).
3. (a) The reduced row echelon form of A is:

$$
U=\left[\begin{array}{rrrrrr}
1 & 2 & 0 & 5 & -3 & 0 \\
0 & 0 & 1 & -1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Columns 2, 4, and 5 correspond to the free variables.

$$
\begin{aligned}
& \operatorname{Col} 2=2 \operatorname{Col} 1 \\
& \operatorname{Col} 4=5 \operatorname{Col} 1-\operatorname{Col} 3 \\
& \operatorname{Col} 5=-3 \operatorname{Col} 1+2 \operatorname{Col} 3
\end{aligned}
$$

(b) Columns 1, 3, and 6 of A correspond to the lead variables of U. The remaining columns of A can be written as linear combinations of Columns 1,3 , and 6 as follows:

$$
\begin{aligned}
& \operatorname{Col} 2=2 \operatorname{Col} 1 \\
& \operatorname{Col} 4=5 \operatorname{Col} 1-\operatorname{Col} 3 \\
& \operatorname{Col} 5=-3 \operatorname{Col} 1+2 \operatorname{Col} 3
\end{aligned}
$$

which are the same equations we had in (a).
4. (c) Since $\operatorname{det} A=5, A^{-1}$ exists and the solution to $A \mathbf{x}=\mathbf{b}$ is $\mathbf{x}=A^{-1} \mathbf{b}$. Thus, \mathbf{b} is in the column space of A and $A \mathbf{x}=\mathbf{b}$ is consistent.
(d) \mathbf{b} cannot be written as a linear combination of the columns of A. Therefore, \mathbf{b} is not in the column space of A and the system $A \mathbf{x}=\mathbf{b}$ is not consistent.
5. (a) In (c), there will only be one solution.

