Math 310 Homework 8 Solutions

Chapter 4, Section 1

5. (a) Is $L(\mathbf{x})=\left[x_{2}, x_{3}\right]^{T}$ a linear transformation from \mathbb{R}^{3} into \mathbb{R}^{2} ? Yes, the two linearity properties are satisfied:

$$
\begin{gathered}
L(\mathbf{x}+\mathbf{y})=L\left(\left[\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
x_{3}+y_{3}
\end{array}\right]\right)=\left[\begin{array}{l}
x_{2}+y_{2} \\
x_{3}+y_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
y_{2} \\
y_{3}
\end{array}\right]=L(\mathbf{x})+L(\mathbf{y}) \\
L(\alpha \mathbf{x})=L\left(\left[\begin{array}{l}
\alpha x_{1} \\
\alpha x_{2} \\
\alpha x_{3}
\end{array}\right]\right)=\left[\begin{array}{l}
\alpha x_{2} \\
\alpha x_{3}
\end{array}\right]=\alpha\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right]=\alpha L(\mathbf{x})
\end{gathered}
$$

(c) Is $L(\mathbf{x})=\left[1+x_{1}, x_{2}\right]^{T}$ a linear transformation from \mathbb{R}^{3} into \mathbb{R}^{2} ? No, the linearity properties are not satisfied:

$$
L(\mathbf{x}+\mathbf{y})=L\left(\left[\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
x_{3}+y_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
1+x_{1}+y_{1} \\
x_{2}+y_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{c}
1+x_{1} \\
x_{2}
\end{array}\right]}_{=L(\mathbf{x})}+\underbrace{\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]}_{\neq L(\mathbf{y})}
$$

6. (a) Is $L(\mathbf{x})=\left[x_{1}, x_{2}, 1\right]^{T}$ a linear transformation from \mathbb{R}^{2} into \mathbb{R}^{3} ? No, the linearity properties are not satisfied:

$$
L(\mathbf{x}+\mathbf{y})=L\left(\left[\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
1
\end{array}\right]=\underbrace{\left[\begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array}\right]}_{=L(\mathbf{x})}+\underbrace{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
0
\end{array}\right]}_{\neq L(\mathbf{y})}
$$

(b) This is a linear transformation.
7. (d) $L(A)=2 A$ is a linear operator on $\mathbb{R}^{n \times n}$ because the linearity properties are satisfied:

$$
\begin{aligned}
L(A+B) & =2(A+B)=2 A+2 B=L(A)+L(B) \\
L(\alpha A) & =2(\alpha A)=2 \alpha(A)=\alpha(2 A)=\alpha L(A)
\end{aligned}
$$

17. (c) The linear operator on \mathbb{R}^{3} is $L(\mathbf{x})=\left[x_{1}, x_{1}, x_{1}\right]^{T}$. The kernel is the set of all solutions to $L(\mathbf{x})=\mathbf{0}$:

$$
L(\mathbf{x})=\left[\begin{array}{l}
x_{1} \\
x_{1} \\
x_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Thus, we must have $x_{1}=0$. However, since the input vectors are in \mathbb{R}^{3}, the values of x_{2} and x_{3} can be anything. Therefore, the kernel is:

$$
\begin{aligned}
& \operatorname{ker}(L)=\left\{\left.\left[\begin{array}{c}
0 \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, x_{2}, x_{3} \in \mathbb{R}\right\} \\
& \operatorname{ker}(L)=\left\{\left.x_{2}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \right\rvert\, x_{2}, x_{3} \in \mathbb{R}\right\} \\
& \operatorname{ker}(L)=\operatorname{Span}\left\{\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

The range or image of L is:

$$
\operatorname{im}(L)=\left\{\left.x_{1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \right\rvert\, x_{1} \in \mathbb{R}\right\}=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

Chapter 4, Section 2

2. (c) $A=\left[\begin{array}{rrr}-1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$
3. (b) $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$
4. To find the matrix representation of L, we first plug in the standard basis vectors into the mapping:

$$
\begin{aligned}
& L\left(\mathbf{e}_{1}\right)=L\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\mathbf{b}_{1}+\mathbf{b}_{3}=1 \cdot \mathbf{b}_{1}+0 \cdot \mathbf{b}_{2}+1 \cdot \mathbf{b}_{3} \\
& L\left(\mathbf{e}_{2}\right)=L\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\mathbf{b}_{2}+\mathbf{b}_{3}=0 \cdot \mathbf{b}_{1}+1 \cdot \mathbf{b}_{2}+1 \cdot \mathbf{b}_{3}
\end{aligned}
$$

The columns of the A matrix are then:

$$
\begin{aligned}
& \mathbf{a}_{1}=\left[L\left(\mathbf{e}_{1}\right)\right]_{F}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \\
& \mathbf{a}_{2}=\left[L\left(\mathbf{e}_{2}\right)\right]_{F}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
\end{aligned}
$$

where $F=\left[\begin{array}{lll}\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3}\end{array}\right]$. The A matrix is then:

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]
$$

18. (a) To find the matrix representation of $L(\mathbf{x})=\left[x_{3}, x_{1}\right]^{T}$, we plug in the \mathbf{u} basis vectors into the mapping:

$$
\begin{aligned}
& L\left(\mathbf{u}_{1}\right)=L\left(\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=-1 \cdot \mathbf{b}_{1}+0 \cdot \mathbf{b}_{2} \\
& L\left(\mathbf{u}_{2}\right)=L\left(\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
1
\end{array}\right]=-3 \cdot \mathbf{b}_{1}+2 \cdot \mathbf{b}_{2} \\
& L\left(\mathbf{u}_{3}\right)=L\left(\left[\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=1 \cdot \mathbf{b}_{1}+0 \cdot \mathbf{b}_{2}
\end{aligned}
$$

The columns of the A matrix are then:

$$
\begin{aligned}
& \mathbf{a}_{1}=\left[L\left(\mathbf{u}_{1}\right)\right]_{F}=\left[\begin{array}{r}
-1 \\
0
\end{array}\right] \\
& \mathbf{a}_{2}=\left[L\left(\mathbf{u}_{2}\right)\right]_{F}=\left[\begin{array}{r}
-3 \\
2
\end{array}\right] \\
& \mathbf{a}_{3}=\left[L\left(\mathbf{u}_{3}\right)\right]_{F}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

where $F=\left[\mathbf{b}_{1} \mathbf{b}_{2}\right]$. The A matrix is then:

$$
A=\left[\begin{array}{rrr}
-1 & -3 & 1 \\
0 & 2 & 0
\end{array}\right]
$$

Chapter 4, Section 3

2. The linear transformation is defined by $L(\mathbf{x})=\left[-x_{1}, x_{2}\right]^{T}$.
(a) The transition matrix from the \mathbf{v} basis to the \mathbf{u} basis is given by $S=V^{-1} U$. The U and V matrices are:

$$
U=\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right], \quad V=\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right]
$$

The inverse of V is:

$$
V^{-1}=\left[\begin{array}{rr}
0 & 1 \\
1 & -2
\end{array}\right]
$$

Therefore, the transition matrix is:

$$
S=V^{-1} U=\left[\begin{array}{rr}
1 & 1 \\
-1 & -3
\end{array}\right]
$$

(b) First, we must find the matrix B that represents L with respect to the \mathbf{u} basis. We start by plugging the \mathbf{u} basis vectors into the mapping:

$$
\begin{aligned}
& L\left(\mathbf{u}_{1}\right)=L\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{r}
-1 \\
1
\end{array}\right]=0 \cdot \mathbf{u}_{1}+1 \cdot \mathbf{u}_{2} \\
& L\left(\mathbf{u}_{2}\right)=L\left(\left[\begin{array}{r}
-1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
1
\end{array}\right]=1 \cdot \mathbf{u}_{1}+0 \cdot \mathbf{u}_{2}
\end{aligned}
$$

The columns of B are:

$$
\begin{aligned}
& \mathbf{b}_{1}=\left[L\left(\mathbf{u}_{1}\right)\right]_{F}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& \mathbf{b}_{2}=\left[L\left(\mathbf{u}_{2}\right)\right]_{F}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

where $F=\left[\begin{array}{ll}\mathbf{u}_{1} & \mathbf{u}_{2}\end{array}\right]$. The matrix B is then:

$$
B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
$$

The matrix A that represents L with respect to the \mathbf{v} basis is then:

$$
A=S B S^{-1}=S I S^{-1}=S S^{-1}=I
$$

4. The transition matrix from the \mathbf{v} basis to the standard basis is:

$$
V=\left[\begin{array}{rrr}
1 & 1 & 0 \\
1 & 2 & -2 \\
1 & 0 & 1
\end{array}\right]
$$

The matrix B representing L with respect to the \mathbf{v} basis is then:

$$
B=V^{-1} A V=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

5. (a) We start by plugging the basis functions into the mapping and writing the results as linear combinations of the basis functions:

$$
\begin{aligned}
L(1) & =x \frac{d}{d x}(1)+\frac{d^{2}}{d x^{2}}(1)=x(0)+0=0=0 \cdot 1+0 \cdot x+0 \cdot x^{2} \\
L(x) & =x \frac{d}{d x}(x)+\frac{d^{2}}{d x^{2}}(x)=x(1)+0=x=0 \cdot 1+1 \cdot x+0 \cdot x^{2} \\
L\left(x^{2}\right) & =x \frac{d}{d x}\left(x^{2}\right)+\frac{d^{2}}{d x^{2}}\left(x^{2}\right)=x(2 x)+2=2 x^{2}+2=2 \cdot 1+0 \cdot x+2 \cdot x^{2}
\end{aligned}
$$

Therefore, the columns of A are:

$$
\begin{aligned}
& \mathbf{a}_{1}=[L(1)]_{F}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \mathbf{a}_{2}=[L(x)]_{F}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \\
& \mathbf{a}_{3}=\left[L\left(x^{2}\right)\right]_{F}=\left[\begin{array}{l}
2 \\
0 \\
2
\end{array}\right]
\end{aligned}
$$

The matrix A is then:

$$
A=\left[\begin{array}{lll}
0 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

(b) Using the basis $\left[1, x, x^{2}+1\right]$, we'll get the same $L\left(p_{i}(x)\right)$ vectors but we must now write these in terms of the new basis:

$$
\begin{aligned}
L(1) & =0=0 \cdot 1+0 \cdot x+0 \cdot\left(x^{2}+1\right) \\
L(x) & =x=0 \cdot 1+1 \cdot x+0 \cdot\left(x^{2}+1\right) \\
L\left(x^{2}+1\right) & =2 x^{2}+2=0 \cdot 1+0 \cdot x+2 \cdot\left(x^{2}+1\right)
\end{aligned}
$$

Therefore, the columns of B are:

$$
\begin{aligned}
& \mathbf{b}_{1}=[L(1)]_{F}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \mathbf{b}_{2}=[L(x)]_{F}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \\
& \mathbf{b}_{3}=\left[L\left(x^{2}+1\right)\right]_{F}=\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]
\end{aligned}
$$

The matrix B is then:

$$
B=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

(c) The matrix S is the transition matrix from $\left[1, x, x^{2}+1\right]$ to $\left[1, x, x^{2}\right]$. Since the latter basis is the standard basis for P_{3}, the U matrix is the identity matrix: $U=I$. The V matrix is:

$$
V=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Therefore, the transition matrix S is:

$$
S=U^{-1} V=I^{-1} V=I V=V
$$

It will work out that $B=S^{-1} A S$.

