Math 310 Homework 9 Solutions

Chapter 5, Section 1

1. (a) Since $\mathbf{w}=3 \mathbf{v}, \mathbf{v}$ and \mathbf{w} have the same direction and, thus, the angle between them is 0°.
(b) Since $\mathbf{v}^{T} \mathbf{w}=0$, the angle between the vectors is 90°.
2. We are given that $\|\mathbf{x}\|=2$ and $\|\mathbf{y}\|=3$. So we know that

$$
\mathbf{x}^{T} \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta=6 \cos \theta
$$

Therefore, since $|\cos \theta| \leq 1$ we can say that $\left|\mathbf{x}^{T} \mathbf{y}\right| \leq 6$.

Chapter 5, Section 2

1. (a) $R\left(A^{T}\right)=\operatorname{Span}\left\{\left[\begin{array}{l}3 \\ 4\end{array}\right],\left[\begin{array}{l}6 \\ 8\end{array}\right]\right\}$. These vectors form a spanning set but they are linearly dependent (they are multiples of each other). Therefore, to get a basis we will eliminate the second vector. So,

$$
\text { basis for } R\left(A^{T}\right) \text { is }\left[\begin{array}{l}
3 \\
4
\end{array}\right]
$$

$N(A)=\operatorname{Span}\left\{\left[\begin{array}{r}-4 \\ 3\end{array}\right]\right\}$. This vector forms a spanning set and is linearly independent. So,

$$
\text { basis for } N(A) \text { is }\left[\begin{array}{r}
-4 \\
3
\end{array}\right]
$$

$R(A)=\operatorname{Span}\left\{\left[\begin{array}{l}3 \\ 6\end{array}\right],\left[\begin{array}{l}4 \\ 8\end{array}\right]\right\}$. These vectors form a spanning set but they are linearly dependent
(they are multiples of each other). Therefore, to get a basis we will eliminate the second vector. So,

$$
\text { basis for } R(A) \text { is }\left[\begin{array}{l}
3 \\
6
\end{array}\right]
$$

$N\left(A^{T}\right)=\operatorname{Span}\left\{\left[\begin{array}{r}-2 \\ 1\end{array}\right]\right\}$. This vector forms a spanning set and is linearly independent. So,
basis for $N\left(A^{T}\right)$ is $\left[\begin{array}{r}-2 \\ 1\end{array}\right]$
2. (a) $S=\operatorname{Span}\left\{\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]\right\}=R\left(A^{T}\right)$ where

$$
A^{T}=\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right] \Rightarrow A=\left[\begin{array}{lll}
1 & -1 & 1
\end{array}\right]
$$

Therefore, since $N(A)=R\left(A^{T}\right)^{\perp}$ we have $S^{\perp}=R\left(A^{T}\right)^{\perp}=N(A)$. A is already in row reduced echelon form. Therefore, x_{2} and x_{3} are free variables for the system of equations $A \mathbf{x}=\mathbf{0}$. Let $x_{2}=\alpha$ and $x_{3}=\beta$. We then have $x_{1}-x_{2}+x_{3}=0$ or $x_{1}=x_{2}-x_{3}=\alpha-\beta$. The nullspace of A and, thus, the orthogonal complement of S is then:

$$
\begin{array}{r}
S^{\perp}=N(A)=\left\{\left.\left[\begin{array}{r}
\alpha-\beta \\
\alpha \\
\beta
\end{array}\right] \right\rvert\, \alpha, \beta \in \mathbb{R}\right\} \\
S^{\perp}=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]\right\}
\end{array}
$$

3. (b) Using the same argument as used in the previous problem, we find that S^{\perp} is the nullspace of the matrix $A=\left[\begin{array}{rrr}1 & 2 & 1 \\ 1 & -1 & 2\end{array}\right]$. Therefore, we have:

$$
S^{\perp}=\operatorname{Span}\left\{\left[\begin{array}{r}
-5 \\
1 \\
3
\end{array}\right]\right\}
$$

4. Using the same argument as used in the previous two problems, we find that S^{\perp} is the nullspace of the matrix $A=\left[\begin{array}{rrrr}1 & 0 & -2 & 1 \\ 0 & 1 & 3 & -2\end{array}\right]$. Therefore, we have:

$$
S^{\perp}=\operatorname{Span}\left\{\left[\begin{array}{r}
2 \\
-3 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
-1 \\
2 \\
0 \\
1
\end{array}\right]\right\}
$$

