Math 310 Quiz 2 Solution

1. In each case below, state whether or not the inverse exists. If it does, find it. If it doesn't, explain why not.
(a) $A=\left[\begin{array}{rr}0 & 1 \\ 2 & -2\end{array}\right]$
(b) $B=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$
2. Find an elementary matrix E such that $E C=D$ for the following pair of matrices:

$$
C=\left[\begin{array}{rrr}
1 & 2 & 3 \\
0 & 1 & -2 \\
2 & -1 & 1
\end{array}\right] \quad D=\left[\begin{array}{rrr}
1 & 2 & 3 \\
0 & 1 & -2 \\
0 & -5 & -5
\end{array}\right]
$$

Solution:

1. (a) To find the inverse, we augment A with I and row reduce:

$$
\left.\begin{array}{rl}
{\left[\begin{array}{rr|rr}
0 & 1 & 1 & 0 \\
2 & -2 & 0 & 1
\end{array}\right]} & \begin{array}{l}
\xrightarrow[R_{2} \rightarrow R_{1}]{R_{1} \rightarrow R_{2}}
\end{array}
\end{array} \begin{array}{rr|rr}
2 & -2 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

Therefore, the inverse of A is:

$$
A^{-1}=\left[\begin{array}{cc}
1 & \frac{1}{2} \\
1 & 0
\end{array}\right]
$$

(b) To find the inverse, we augment A with I and row reduce:

$$
\left[\begin{array}{ll|ll}
1 & 1 & 1 & 0 \\
2 & 2 & 0 & 1
\end{array}\right] \xrightarrow{R_{2} \rightarrow R_{2}-2 R_{1}}\left[\begin{array}{rr|rr}
1 & 1 & 1 & 0 \\
0 & 0 & -2 & 1
\end{array}\right]
$$

We cannot possibly row reduce A to the identity matrix because we have a row of zeros. Therefore, A is singular and its inverse doesn't exist.
2. D is obtained by replacing the third row of C with its sum with -2 times the first row. Therefore, the elementary matrix is obtained by performing the same operation on the identity matrix. The result is:

$$
E=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]
$$

