Math 310 Quiz 3 Solution

1. Let $A=\left[\begin{array}{rrr}1 & 1 & 1 \\ 0 & -2 & 0 \\ 2 & 3 & 2\end{array}\right]$.
(a) Compute $\operatorname{det} A$.
(b) Is A singular? Why or why not?

Solution:

(a) To compute the determinant we expand by cofactors of the second row since it has the most zeros:

$$
\begin{aligned}
& \operatorname{det} A=0 \cdot\left|\begin{array}{ll}
1 & 1 \\
3 & 2
\end{array}\right|-(-2) \cdot\left|\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right|+0 \cdot\left|\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right| \\
& \operatorname{det} A=0+2[(1)(2)-(1)(2)]+0 \\
& \operatorname{det} A=0
\end{aligned}
$$

(b) Since $\operatorname{det} A=0, A$ is singular.
2. Let $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ -1 & 0 & 2 \\ 0 & -4 & 1\end{array}\right]$. The $L U$-factorization of A is:

$$
A=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -2 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 2 & 3 \\
0 & 2 & 5 \\
0 & 0 & 11
\end{array}\right]
$$

Compute $\operatorname{det} A$.

Solution: We can use the following property of determinants:

$$
\operatorname{det} A B=\operatorname{det} A \operatorname{det} B
$$

Applied to this problem we have:

$$
\operatorname{det} A=\operatorname{det} L U=\operatorname{det} L \operatorname{det} U
$$

Since L and U are triangular, their determinants are the product of the entries on the main diagonal. Thus,

$$
\begin{aligned}
\operatorname{det} L & =(1)(1)(1)=1 \\
\operatorname{det} U & =(1)(2)(11)=22 \\
\Rightarrow \quad \operatorname{det} A & =\operatorname{det} L \operatorname{det} U=(1)(22)=22
\end{aligned}
$$

