Math 310 Quiz 4 Solution

1. Suppose $\operatorname{det} A=2$ and

$$
A^{-1}=\left[\begin{array}{rr}
\frac{1}{2} & 1 \\
0 & -\frac{3}{2}
\end{array}\right]
$$

What is adj A ?
Solution: Using the definition $A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A$, we compute adj A as follows:

$$
\begin{aligned}
& \operatorname{adj} A=(\operatorname{det} A) A^{-1} \\
& \operatorname{adj} A=2 \cdot\left[\begin{array}{rr}
\frac{1}{2} & 1 \\
0 & -\frac{3}{2}
\end{array}\right] \\
& \operatorname{adj} A=\left[\begin{array}{rr}
1 & 2 \\
0 & -3
\end{array}\right]
\end{aligned}
$$

2. Use Cramer's rule to solve the following system of equations:

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3} & =1 \\
x_{2}+x_{3} & =0 \\
2 x_{2} & -3 x_{3}
\end{aligned}=0
$$

Solution: We write the system of equations in matrix-vector form:

$$
\begin{gathered}
A \mathbf{x}=\mathbf{b} \\
{\left[\begin{array}{rrr}
1 & 2 & 3 \\
0 & 1 & 1 \\
0 & 2 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

$\operatorname{det} A=-5$. Using Cramer's Rule we find that:

$$
\begin{aligned}
& x_{1}=\frac{\operatorname{det} A_{1}}{\operatorname{det} A}=\frac{\left|\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 1 \\
0 & 2 & -3
\end{array}\right|}{-5}=\frac{-5}{-5}=1 \\
& x_{2}=\frac{\operatorname{det} A_{2}}{\operatorname{det} A}=\frac{\left|\begin{array}{lll}
1 & 1 & 3 \\
0 & 0 & 1 \\
0 & 0 & -3
\end{array}\right|}{\frac{-5}{1}}=\frac{0}{-5}=0 \\
& x_{3}=\frac{\operatorname{det} A_{3}}{\operatorname{det} A}=\frac{\left|\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 0 \\
0 & 2 & 0
\end{array}\right|}{-5}=\frac{0}{-5}=0
\end{aligned}
$$

