Math 310 Quiz 6 Solution

Consider the following linear operator on \mathbb{R}^2 :

$$L(\mathbf{x}) = \left[\begin{array}{c} x_1 + 2x_2 \\ x_1 - x_2 \end{array} \right]$$

Find the matrix representation of L with respect to each of the bases below:

1. $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 2. $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Solution:

- 1. $L(\mathbf{e}_1) = \begin{bmatrix} 1\\1\\\end{bmatrix}$, $L(\mathbf{e}_2) = \begin{bmatrix} 2\\-1\\\end{bmatrix}$. Therefore, the matrix representation of L with respect to the standard basis is: $A = \begin{bmatrix} 1 & 2\\ 1 & -1\\\end{bmatrix}$
- 2. $L(\mathbf{v}_1) = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$, $L(\mathbf{v}_2) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. However, we are not done yet. We must write these two vectors with respect to the \mathbf{v}_1 , \mathbf{v}_2 basis vectors:

$$L(\mathbf{v}_1) = \begin{bmatrix} 3\\0 \end{bmatrix} = 0\mathbf{v}_1 + 3\mathbf{v}_2$$
$$L(\mathbf{v}_2) = \begin{bmatrix} 1\\1 \end{bmatrix} = 1\mathbf{v}_1 + 0\mathbf{v}_2$$

Therefore, the matrix representation of L with respect to the **v** basis vectors is:

$A = \begin{bmatrix} 0\\ 3 \end{bmatrix}$	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$
---	---------------------------------------