Math 310 Quiz 6 Solution

Consider the following linear operator on \mathbb{R}^{2} :

$$
L(\mathbf{x})=\left[\begin{array}{c}
x_{1}+2 x_{2} \\
x_{1}-x_{2}
\end{array}\right]
$$

Find the matrix representation of L with respect to each of the bases below:

1. $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
2. $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$

Solution:

1. $L\left(\mathbf{e}_{1}\right)=\left[\begin{array}{l}1 \\ 1\end{array}\right], L\left(\mathbf{e}_{2}\right)=\left[\begin{array}{r}2 \\ -1\end{array}\right]$. Therefore, the matrix representation of L with respect to the standard basis is:

$$
A=\left[\begin{array}{rr}
1 & 2 \\
1 & -1
\end{array}\right]
$$

2. $L\left(\mathbf{v}_{1}\right)=\left[\begin{array}{l}3 \\ 0\end{array}\right], L\left(\mathbf{v}_{2}\right)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. However, we are not done yet. We must write these two vectors with respect to the $\mathbf{v}_{1}, \mathbf{v}_{2}$ basis vectors:

$$
\begin{aligned}
& L\left(\mathbf{v}_{1}\right)=\left[\begin{array}{l}
3 \\
0
\end{array}\right]=0 \mathbf{v}_{1}+3 \mathbf{v}_{2} \\
& L\left(\mathbf{v}_{2}\right)=\left[\begin{array}{l}
1 \\
1
\end{array}\right]=1 \mathbf{v}_{1}+0 \mathbf{v}_{2}
\end{aligned}
$$

Therefore, the matrix representation of L with respect to the \mathbf{v} basis vectors is:

$$
A=\left[\begin{array}{ll}
0 & 1 \\
3 & 0
\end{array}\right]
$$

