# Math 310 Quiz 7 Solution 

Let $S=\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$ be a subspace of $\mathbb{R}^{3}$.

1. Find a basis for $S^{\perp}$.
2. What is $\operatorname{dim} S^{\perp}$ ?

Solution: We will use the fact that $S=R\left(A^{T}\right)$ where

$$
A^{T}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

Since $S^{\perp}=R\left(A^{T}\right)^{\perp}=N(A)$, all we have to do is find a basis for $N(A)$ where $A=\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$. This means solving the system $A \mathbf{x}=\mathbf{0}$ :

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{0} \\
{\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } & =0 \\
x_{2}+x_{3} & =0
\end{aligned}
$$

Column 2 is the only pivot column. Therefore, $x_{1}$ and $x_{3}$ are free variables. We let $x_{1}=\alpha$ and $x_{3}=\beta$. Then from the above equation we get $x_{2}=-x_{3}=-\beta$. The nullspace of $A$ is then:

$$
\begin{aligned}
& N(A)=\left\{\left.\left[\begin{array}{r}
\alpha \\
-\beta \\
\beta
\end{array}\right] \right\rvert\, \alpha, \beta \in \mathbb{R}\right\} \\
& N(A)=\left\{\left.\alpha\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\beta\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right] \right\rvert\, \alpha, \beta \in \mathbb{R}\right\} \\
& N(A)=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

The vectors that span $N(A)$ and, thus, $S^{\perp}$ are a spanning set and are linearly independent (since there are only two vectors we know that they are LI since they are not multiples of each other). Therefore, a basis for $S^{\perp}$ is:

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right]
$$

Since there are two vectors in the basis, $\operatorname{dim} S^{\perp}=2$.

