Math 310 Quiz 8 Solution

1. Use the Gram-Schmidt method to find an orthonormal basis from the basis $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ where:

$$
\mathbf{x}_{1}=\left[\begin{array}{l}
3 \\
4
\end{array}\right], \quad \mathbf{x}_{2}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

2. Find the eigenvalues and eigenvectors of the matrix:

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Solution:

1. Start by computing \mathbf{u}_{1} :

$$
\mathbf{u}_{1}=\frac{\mathbf{x}_{1}}{\left\|\mathbf{x}_{1}\right\|}=\frac{1}{5}\left[\begin{array}{l}
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
3 / 5 \\
4 / 5
\end{array}\right]
$$

Now compute \mathbf{u}_{2} :

$$
\begin{aligned}
\mathbf{u}_{2} & =\frac{\mathbf{x}_{2}-\mathbf{p}_{1}}{\left\|\mathbf{x}_{2}-\mathbf{p}_{1}\right\|} \\
\mathbf{p}_{1} & =\left\langle\mathbf{x}_{2}, \mathbf{u}_{1}\right\rangle \mathbf{u}_{1}
\end{aligned}
$$

First, compute \mathbf{p}_{1} :

$$
\mathbf{p}_{1}=\frac{3}{25}\left[\begin{array}{l}
3 \\
4
\end{array}\right]
$$

Then compute the difference $\mathbf{x}_{2}-\mathbf{p}_{1}$:

$$
\mathbf{x}_{2}-\mathbf{p}_{1}=\frac{1}{25}\left[\begin{array}{r}
16 \\
-12
\end{array}\right]
$$

Finally we have:

$$
\mathbf{u}_{2}=\frac{1}{20}\left[\begin{array}{r}
16 \\
-12
\end{array}\right]=\left[\begin{array}{r}
4 / 5 \\
-3 / 5
\end{array}\right]
$$

2. The matrix is upper triangular so the eigenvalues are on the main diagonal:

$$
\lambda=0,1 \text { (repeated) }
$$

For $\lambda=0$ we find an associated eigenvector by solving $(A-0 I) \mathbf{x}=\mathbf{0}$:

$$
\begin{aligned}
(A-0 I) \mathbf{x} & =\mathbf{0} \\
{\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\Rightarrow \quad x_{1}-x_{2} & =0 \\
0 & =0 \\
x_{3} & =0
\end{aligned}
$$

x_{2} is a free variable so we let $x_{2}=\alpha$. Then we have $x_{1}=x_{2}=\alpha$ from the first equation. The last equation tells us $x_{3}=0$. The set of solutions are:

$$
\mathbf{x}=\alpha\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

For $\lambda=1$ we find an associated eigenvector(s) by solving $(A-I) \mathbf{x}=\mathbf{0}$:

$$
\begin{aligned}
(A-1 I) \mathbf{x} & =\mathbf{0} \\
{\left[\begin{array}{ccc}
0 & -1 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\Rightarrow-x_{2} & =0 \\
-x_{2} & =0 \\
0 & =0
\end{aligned}
$$

Both x_{1} and x_{3} are free variables so we let $x_{1}=\alpha$ and $x_{3}=\beta$. We also have $x_{2}=0$ from the first (and second) equation. The set of solutions are:

$$
\mathbf{x}=\alpha\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\beta\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Therefore, eigenvectors for A are:

