Math 310 Quiz 8 Solution

1. Use the Gram-Schmidt method to find an orthonormal basis from the basis $\{\mathbf{x}_1, \mathbf{x}_2\}$ where:

$$\mathbf{x}_1 = \begin{bmatrix} 3\\4 \end{bmatrix}, \ \mathbf{x}_2 = \begin{bmatrix} 1\\0 \end{bmatrix}$$

2. Find the eigenvalues and eigenvectors of the matrix:

$$A = \left[\begin{array}{rrrr} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Solution:

1. Start by computing \mathbf{u}_1 :

$$\mathbf{u}_1 = \frac{\mathbf{x}_1}{||\mathbf{x}_1||} = \frac{1}{5} \begin{bmatrix} 3\\4 \end{bmatrix} = \begin{bmatrix} 3/5\\4/5 \end{bmatrix}$$

Now compute \mathbf{u}_2 :

$$\mathbf{u}_2 = \frac{\mathbf{x}_2 - \mathbf{p}_1}{||\mathbf{x}_2 - \mathbf{p}_1||}$$
$$\mathbf{p}_1 = \langle \mathbf{x}_2, \mathbf{u}_1 \rangle \mathbf{u}_1$$

First, compute \mathbf{p}_1 :

$$\mathbf{p}_1 = \frac{3}{25} \left[\begin{array}{c} 3\\ 4 \end{array} \right]$$

Then compute the difference $\mathbf{x}_2 - \mathbf{p}_1$:

$$\mathbf{x}_2 - \mathbf{p}_1 = \frac{1}{25} \left[\begin{array}{c} 16\\ -12 \end{array} \right]$$

Finally we have:

$$\mathbf{u}_2 = \frac{1}{20} \begin{bmatrix} 16\\ -12 \end{bmatrix} = \begin{bmatrix} 4/5\\ -3/5 \end{bmatrix}$$

2. The matrix is upper triangular so the eigenvalues are on the main diagonal:

 $\lambda = 0, 1 \text{ (repeated)}$

For $\lambda = 0$ we find an associated eigenvector by solving $(A - 0I)\mathbf{x} = \mathbf{0}$:

$$(A - 0I)\mathbf{x} = \mathbf{0}$$
$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\Rightarrow x_1 - x_2 = 0$$
$$0 = 0$$
$$x_3 = 0$$

 x_2 is a free variable so we let $x_2 = \alpha$. Then we have $x_1 = x_2 = \alpha$ from the first equation. The last equation tells us $x_3 = 0$. The set of solutions are:

$$\mathbf{x} = \alpha \begin{bmatrix} 1\\1\\0 \end{bmatrix}$$

For $\lambda = 1$ we find an associated eigenvector(s) by solving $(A - I)\mathbf{x} = \mathbf{0}$:

$$(A - 1I)\mathbf{x} = \mathbf{0}$$
$$\begin{bmatrix} 0 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\Rightarrow -x_2 = 0$$
$$-x_2 = 0$$
$$0 = 0$$

Both x_1 and x_3 are free variables so we let $x_1 = \alpha$ and $x_3 = \beta$. We also have $x_2 = 0$ from the first (and second) equation. The set of solutions are:

$\mathbf{x} = \alpha \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$+\beta$	$\left[\begin{array}{c} 0\\0\\1\end{array}\right]$
---	----------	--

Therefore, eigenvectors for A are:

[1]		۲ ₁ -		ΓO	٦
1		0		0	
	,		,		
		L ⁰ -		L	L
$\lambda = 0$			$\lambda = 1$		