Math 310 Quiz 9 Solution

Factor the matrix A below into the product $X D X^{-1}$ where D is a diagonal matrix:

$$
A=\left[\begin{array}{ll}
2 & -8 \\
1 & -4
\end{array}\right]
$$

Solution: To factor A we must find its eigenvalues and eigenvectors. The eigenvalues of A are:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\left|\begin{array}{cc}
2-\lambda & -8 \\
1 & -4-\lambda
\end{array}\right| & =0 \\
(2-\lambda)(-4-\lambda)-(-8)(1) & =0 \\
\lambda^{2}+2 \lambda & =0 \\
\lambda(\lambda+2) & =0 \\
\lambda=0, \lambda & =2
\end{aligned}
$$

An eigenvector for $\lambda=0$ is found as follows:

$$
\begin{aligned}
(A-0 I) \mathbf{x} & =\mathbf{0} \\
{\left[\begin{array}{cc}
2 & -8 \\
1 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\Rightarrow x_{1}-4 x_{2} & =0
\end{aligned}
$$

Let $x_{2}=\alpha$, then $x_{1}=4 x_{2}=4 \alpha$. Then an eigenvector for $\lambda=0$ is $\left[\begin{array}{l}4 \\ 1\end{array}\right]$.
An eigenvector for $\lambda=-2$ is found as follows:

$$
\begin{aligned}
(A+2 I) \mathbf{x} & =\mathbf{0} \\
{\left[\begin{array}{cc}
4 & -8 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\Rightarrow x_{1}-2 x_{2} & =0
\end{aligned}
$$

Let $x_{2}=\alpha$, then $x_{1}=2 x_{2}=2 \alpha$. Then an eigenvector for $\lambda=-2$ is $\left[\begin{array}{l}2 \\ 1\end{array}\right]$. The X and D matrices are:

$$
X=\left[\begin{array}{ll}
4 & 2 \\
1 & 1
\end{array}\right], D=\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right]
$$

The inverse of X is:

$$
X^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A=\frac{1}{2}\left[\begin{array}{rr}
1 & -2 \\
-1 & 4
\end{array}\right]
$$

