Math 310 Hour Exam 1

(Solutions)

1.(20pts) In the vector space $V = \mathbb{R}^3$, let $S = \{(x_1, x_2, x_3)^T | x_1 x_2 = x_3\}$. Prove or disprove that the subset S is a subspace of V.

S is nonempty: for example, $(0,0,0)^T \in S$. We can represent arbitrary elements of S by $(a, b, ab)^T$ and $(c, d, cd)^T$. Each of these is in S, but their sum (a + c, b + d, ab + cd) is in S only if $(a + c)(b + d) = ab + cd \iff ad = cb = 0$. This is not true in general. For example, consider $\mathbf{x} = (1, 1, 1)^T$ and $\mathbf{y} = (2, 2, 4)^T$. Both of these are in S, but their sum $\mathbf{x} + \mathbf{y} = (3, 3, 5) \notin S$. Thus S is not closed under addition. so S is NOT a subspace of V.

2.(10pts) Let
$$M = \begin{pmatrix} 1 & 2 & -3 & -1 \\ -2 & -4 & 6 & 3 \end{pmatrix}$$
.

(a) Find the nullspace N(M), and give your answer in set notation.

The nullspace of M is the set of vectors x such that Mx = 0. Row Reduce (M|0) to get $\begin{pmatrix} 1 & 2 & -3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$ General solution: $\{(-2\alpha + 3\beta, \alpha, \beta, 0)^T | \alpha, \beta \in \mathbb{R}\}.$

(b) What is the dimension of N(M) over \mathbb{R} ?

Since α and β are both free variables over \mathbb{R} , N(M) is 2-dimensional over \mathbb{R} .

For the remainder of the exam, let $A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 4 & 3 \\ 1 & 2 & 2 \end{pmatrix}$.

3.(10pts) Let
$$b = \begin{pmatrix} 3 \\ 8 \\ 7 \end{pmatrix}$$

(a) Using Gauss-Jordan, find the reduced row-echelon form of the augmented matrix (A|b).

(b) Give the solutions of the corresponding linear system $A\mathbf{x} = b$.

$$\mathbf{x} = \left(\begin{array}{c} 1\\ -1\\ 4 \end{array}\right)$$

4.(15pts) Find the determinant of A by each of the following methods:

(a) Using cofactor expansion.

Use row 2 to get det $A = (-1)^{2+2} \cdot 4 \cdot (2-1) + (-1)^{2+3} \cdot 3 \cdot (2-2) = 4.$ (b) Using elimination.

Our first row reduction step in #3(a) was a type III operation, which does not change the value

of the determinant. Thus det $A = det \begin{pmatrix} 1 & 2 & 1 \\ 0 & 4 & 3 \\ 0 & 0 & 1 \end{pmatrix} = 1 \cdot 4 \cdot 1 = 4.$

5.(15pts) Use Cramer's Rule to solve the following system of linear equations. Show an outline of your steps, but you may use a calculator for computations.

$$x + 2y + z = 11$$

$$4y + 3z = 4$$

$$x + 2y + 2z = -1$$

We have $A\mathbf{x} = c$, where $c = \begin{pmatrix} 11 \\ 4 \\ -1 \end{pmatrix}$. By #4, we know det A = 4. Let A_i be the matrix

obtained by replacing the i^{th} column of A by c. We use the calculator to find det $A_1 = 12$, det $A_2 = 40$, and det $A_3 = -48$. Then Cramer's rule tells us that $x = \frac{\det(A_1)}{\det A}$, etc. Our solution is $\mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 10 \\ -12 \end{pmatrix}$.

6.(*15pts*)

(a) Find A^{-1} . Use the same row operations as in #3a on the augmented matrix $(A|I) = \begin{pmatrix} 1 & 2 & 1 & | & 1 & 0 & 0 \\ 0 & 4 & 3 & | & 0 & 1 & 0 \\ 1 & 2 & 2 & | & 0 & 0 & 1 \end{pmatrix}$ to get $\begin{pmatrix} 1 & 0 & 0 & | & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 & | & \frac{3}{4} & \frac{1}{4} & -\frac{3}{4} \\ 0 & 0 & 1 & | & -1 & 0 & 1 \end{pmatrix}$. Thus $A^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{3}{4} & \frac{1}{4} & -\frac{3}{4} \\ -1 & 0 & 1 \end{pmatrix}$. (b) Use your answer for (a) and your calculator to show your answers for #3(b) and #5 are

(b) Use your answer for (a) and your calculator to show your answers for #3(b) and #5 are correct.

$$A^{-1}b = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{3}{4} & \frac{1}{4} & -\frac{3}{4} \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3\\ 8\\ 7 \end{pmatrix} = \begin{pmatrix} 1\\ -1\\ 4 \end{pmatrix}, \quad A^{-1}c = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{3}{4} & \frac{1}{4} & -\frac{3}{4} \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 11\\ 4\\ -1 \end{pmatrix} = \begin{pmatrix} 3\\ 10\\ -12 \end{pmatrix}.$$
 Thus our answers are correct.

7.(5pts) What is the nullspace of the matrix A? Explain why you don't need to make a new calculation. A is an invertible matrix, as we've shown. Thus the reduced row echelon form of A is $\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$

the identity matrix $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. There are no free variables, so we will get a unique solution to $A\mathbf{x} = 0$: namely, $\mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$. So $N(A) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.

8.(10pts) Give the LU-decomposition of A. Be sure to check your answer and show your check. For our first row reduction step in #1a, we replaced row 3 with row 3 - row 1 and got an upper $\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$

triangular matrix. Thus $l_{31} = 1$. Hence $L = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$. The upper triangular matrix we got was $U = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 4 & 3 \\ 0 & 0 & 1 \end{pmatrix}$. We check: $LU = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 0 & 4 & 3 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 4 & 3 \\ 1 & 2 & 2 \end{pmatrix} = A.$