(Solutions)

1. (20pts) In the vector space $V=\mathbb{R}^{3}$, let $S=\left\{\left(x_{1}, x_{2}, x_{3}\right)^{T} \mid x_{1} x_{2}=x_{3}\right\}$. Prove or disprove that the subset S is a subspace of V.
S is nonempty: for example, $(0,0,0)^{T} \in S$. We can represent arbitrary elements of S by $(a, b, a b)^{T}$ and $(c, d, c d)^{T}$. Each of these is in S, but their sum $(a+c, b+d, a b+c d)$ is in S only if $(a+c)(b+d)=a b+c d \Longleftrightarrow a d=c b=0$. This is not true in general. For example, consider $\mathbf{x}=(1,1,1)^{T}$ and $\mathbf{y}=(2,2,4)^{T}$. Both of these are in S, but their sum $\mathbf{x}+\mathbf{y}=(3,3,5) \notin S$. Thus S is not closed under addition, so S is NOT a subspace of V.
2. (10pts) Let $M=\left(\begin{array}{rrrr}1 & 2 & -3 & -1 \\ -2 & -4 & 6 & 3\end{array}\right)$.
(a) Find the nullspace $N(M)$, and give your answer in set notation.

The nullspace of M is the set of vectors \mathbf{x} such that $M \mathbf{x}=0$. Row Reduce ($M \mid 0$) to get $\left(\begin{array}{rrrr|r}1 & 2 & -3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0\end{array}\right)$. General solution: $\left\{(-2 \alpha+3 \beta, \alpha, \beta, 0)^{T} \mid \alpha, \beta \in \mathbb{R}\right\}$.
(b) What is the dimension of $N(M)$ over \mathbb{R} ?

Since α and β are both free variables over $\mathbb{R}, N(M)$ is 2-dimensional over \mathbb{R}.

For the remainder of the exam, let $A=\left(\begin{array}{ccc}1 & 2 & 1 \\ 0 & 4 & 3 \\ 1 & 2 & 2\end{array}\right)$.
3.(10pts) Let $b=\left(\begin{array}{l}3 \\ 8 \\ 7\end{array}\right)$.
(a) Using Gauss-Jordan, find the reduced row-echelon form of the augmented matrix $(A \mid b)$.

Use row operations to get $\left(\begin{array}{rrr|r}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 4\end{array}\right)$
(b) Give the solutions of the corresponding linear system $A \mathbf{x}=b$.

$$
\mathbf{x}=\left(\begin{array}{r}
1 \\
-1 \\
4
\end{array}\right)
$$

4. (15pts) Find the determinant of A by each of the following methods:
(a) Using cofactor expansion.

Use row 2 to get $\operatorname{det} A=(-1)^{2+2} \cdot 4 \cdot(2-1)+(-1)^{2+3} \cdot 3 \cdot(2-2)=4$.
(b) Using elimination.

Our first row reduction step in $\# 3$ (a) was a type III operation, which does not change the value of the determinant. Thus $\operatorname{det} A=\operatorname{det}\left(\begin{array}{lll}1 & 2 & 1 \\ 0 & 4 & 3 \\ 0 & 0 & 1\end{array}\right)=1 \cdot 4 \cdot 1=4$.
5.(15pts) Use Cramer's Rule to solve the following system of linear equations. Show an outline of your steps, but you may use a calculator for computations.

$$
\begin{gathered}
x+2 y+z=11 \\
4 y+3 z=4 \\
x+2 y+2 z=-1
\end{gathered}
$$

We have $A \mathbf{x}=c$, where $c=\left(\begin{array}{r}11 \\ 4 \\ -1\end{array}\right)$. By $\# 4$, we know $\operatorname{det} A=4$. Let A_{i} be the matrix obtained by replacing the $i^{\text {th }}$ column of A by c. We use the calculator to find $\operatorname{det} A_{1}=12$, $\operatorname{det} A_{2}=40$, and $\operatorname{det} A_{3}=-48$. Then Cramer's rule tells us that $x=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det} A}$, etc. Our solution is $\mathbf{x}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{r}3 \\ 10 \\ -12\end{array}\right)$.
6.(15pts)
(a) Find A^{-1}. Use the same row operations as in \#3a on the augmented matrix $(A \mid I)=$ $\left(\begin{array}{lll|lll}1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 4 & 3 & 0 & 1 & 0 \\ 1 & 2 & 2 & 0 & 0 & 1\end{array}\right)$ to get $\left(\begin{array}{lll|rrr}1 & 0 & 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 & \frac{3}{4} & \frac{1}{4} & -\frac{3}{4} \\ 0 & 0 & 1 & -1 & 0 & 1\end{array}\right)$. Thus $A^{-1}=\left(\begin{array}{rrr}\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{3}{4} & \frac{1}{4} & -\frac{3}{4} \\ -1 & 0 & 1\end{array}\right)$.
(b) Use your answer for (a) and your calculator to show your answers for \#3(b) and \#5 are correct.

$$
A^{-1} b=\left(\begin{array}{rrr}
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
\frac{3}{4} & \frac{1}{4} & -\frac{3}{4} \\
-1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
3 \\
8 \\
7
\end{array}\right)=\left(\begin{array}{r}
1 \\
-1 \\
4
\end{array}\right) . \quad A^{-1} c=\left(\begin{array}{rrr}
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
\frac{3}{4} & \frac{1}{4} & -\frac{3}{4} \\
-1 & 0 & 1
\end{array}\right)\left(\begin{array}{r}
11 \\
4 \\
-1
\end{array}\right)=
$$ $\left(\begin{array}{r}3 \\ 10 \\ -12\end{array}\right)$. Thus our answers are correct.

7.(5pts) What is the nullspace of the matrix A ? Explain why you don't need to make a new calculation. A is an invertible matrix, as we've shown. Thus the reduced row echelon form of A is the identity matrix $I=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$. There are no free variables, so we will get a unique solution to $A \mathbf{x}=0$: namely, $\mathbf{x}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$. So $N(A)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.
8. (10pts) Give the $L U$-decomposition of A. Be sure to check your answer and show your check. For our first row reduction step in \#1a, we replaced row 3 with row 3 - row 1 and got an upper triangular matrix. Thus $l_{31}=1$. Hence $L=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$. The upper triangular matrix we got was $U=\left(\begin{array}{lll}1 & 2 & 1 \\ 0 & 4 & 3 \\ 0 & 0 & 1\end{array}\right)$. We check: $L U=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)\left(\begin{array}{lll}1 & 2 & 1 \\ 0 & 4 & 3 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{lll}1 & 2 & 1 \\ 0 & 4 & 3 \\ 1 & 2 & 2\end{array}\right)=A$.

