Math 310: Hour Exam 2

(Solutions)

Prof. S. Smith: Mon 9 Nov 1998

You must SHOW WORK to receive credit.

Problem 1:

(a) Are the columns of the matrix $\begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 0 & -3 & 2 \end{pmatrix}$ linearly independent? (Why/why not?)

Yes. One way: $det(A) = 10 \neq 0$.

(b) Give a basis for the nullspace of the 1×3 matrix A = (1, 1, 1).

Already row-reduced, so x_2 and x_3 are free: solutions of form $(-x_2 - x_3, x_2, x_3)$.

Choosing $x_2 = 1, x_3 = 0$ gives (-1, 1, 0); and $x_2 = 0, x_3 = 1$ gives (-1, 0, 1).

Problem 2:

(a) The trace of a 2×2 matrix A is the sum of its diagonal entries; that is, $trace(A) = A_{1,1} + A_{2,2}$. Show that trace is a linear transformation (from 2x2-matrix space to numbers).

(for +:) $trace(A + B) = (A_{1,1} + B_{1,1}) + (A_{2,2} + B_{2,2})$

 $trace(A) + trace(B) = (A_{1,1} + A_{2,2}) + (B_{1,1} + B_{2,2}) \dots equal.$

(for sc.mult.:) $trace(cA) = cA_{1,1} + cA_{2,2}$; while $c.trace(A) = c(A_{1,1} + A_{2,2})$...equal.

(b) Give the matrix representing (in the standard basis) the linear transformation

 $L: \mathbf{R}^3 \to \mathbf{R}^3$ defined by $L(x_1, x_2, x_3) = (x_1 - x_2 + 2x_3, 2x_1 + x_2, -x_1 - 2x_2 + 2x_3)$.

Apply L to standard basis, put into columns to get $\begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & 0 \\ -1 & -2 & 2 \end{pmatrix}$

Problem 3:

(a) In \mathbb{R}^3 with the usual dot product, determine the orthogonal complement S^{\perp} to the subspace S spanned by (1,1,1) and (1,2,3).

Put in as rows of A and row reduce with $A_2^{-1\times 1}$ to $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$.

Then x_3 is free, and solutions have form $(x_3, -2x_3, x_3)$

(b) Determine the orthogonal (vector) projection of the vector b = (1, 2, 3) in the subspace spanned by the two vectors $v_1 = \frac{1}{\sqrt{2}}(1, -1, 0)$ and $v_2 = \frac{1}{\sqrt{6}}(1, 1, -2)$.

These vectors are already an orthonormal set,

so the scalar projections are just given by the dot products $b \cdot v_1$ and $b \cdot v_2$;

then vector $p = \frac{-1}{\sqrt{2}}v_1 + \frac{-3}{\sqrt{6}}v_2 = -\frac{1}{2}(1, -1, 0) - \frac{1}{2}(1, 1, -2) = (-1, 0, 1).$

Problem 4:

Find the least-squares solution \hat{x} , and the projection p into the column space of A and the error, in the inconsistent system Ax = b given by:

$$\begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 5 \\ -3 \\ 1 \end{pmatrix}.$$

Multiply A^T by the augmented matrix [A|b] to get

$$\left(\begin{array}{cc|c} 1 & 0 & 2 \\ 2 & 1 & 0 \end{array}\right) \left(\begin{array}{cc|c} 1 & 2 & 5 \\ 0 & 1 \\ 2 & 0 & 1 \end{array}\right) = \left(\begin{array}{cc|c} 5 & 2 & 7 \\ 2 & 5 & 7 \end{array}\right).$$

Row operation $A_2^{-\frac{2}{5}\times 1}$ leads to $\begin{pmatrix} 5 & 2 & 7 \\ 0 & \frac{21}{5} & \frac{1}{5} \end{pmatrix}$. This gives $x_2 = 1$ and then $x_1 = 1$.

Multiply by A to get projection $p = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$, so error is $b - p = \begin{pmatrix} 2 \\ -4 \\ -1 \end{pmatrix}$, of length $\sqrt{21}$.

Problem 5:

(a) Let S be the subspace of \mathbb{R}^3 spanned by $v_1 = (1, 0, 1)$ and $v_2 = (1, 1, 0)$. Use the Gram-Schmidt process to find an orthonormal basis for S.

First get orthogonal: use $x_1 = (1, 0, 1)$ and then

$$x_2 = v_2 - [(v_2 \cdot x_1)/(x_1 \cdot x_1)]x_1 = (1, 1, 0) - [1/2](1, 0, 1) = \frac{1}{2}(1, 2, -1).$$

 $x_2 = v_2 - [(v_2 \cdot x_1)/(x_1 \cdot x_1)]x_1 = (1, 1, 0) - [1/2](1, 0, 1) = \frac{1}{2}(1, 2, -1).$ To make orthoNORMAL, divide by lengths to get $u_1 = \frac{1}{\sqrt{2}}(1, 0, 1)$ and $u_2 = \frac{1}{\sqrt{6}}(1, 2, -1).$

(b) Now find an orthonormal basis for the orthogonal complement S^{\perp} , for S in (a).

To
$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
 apply $A_2^{-1 \times 1}$ to get $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$

So x_3 is free and solutions have form $(-x_3, x_3, x_3)$

a basis is given by setting $x_3 = 1$ to get (-1, 1, 1).

To make orthonormal, divide by length to get $u_3 = \frac{1}{\sqrt{3}}(-1, 1, 1)$.