## Math 417 - Midterm Exam Solutions <br> Friday, July 11, 2008

1. (30 pts) Determine all possible series representations of the function:

$$
f(z)=\frac{1}{z\left(z^{2}+1\right)}
$$

about $z=0$ and state their regions of validity.
Solution: The function has singular points at $z=0, z=i$, and $z=-i$. It will have a Laurent Series representation in the region $0<|z|<1$ and another Laurent Series representation in the region $1<|z|<\infty$.
I. In the region $0<|z|<1$ we have

$$
\begin{aligned}
f(z) & =\frac{1}{z} \cdot \frac{1}{1+z^{2}} \\
& =\frac{1}{z}\left(1-z^{2}+\left(z^{2}\right)^{2}-\left(z^{2}\right)^{3}+\cdots\right) \\
& =\frac{1}{z}-z+z^{3}-z^{5}+\cdots \\
& =\sum_{n=0}^{\infty}(-1)^{n} z^{2 n-1}
\end{aligned}
$$

II. In the region $1<|z|<\infty$ we have

$$
\begin{aligned}
f(z) & =\frac{1}{z} \cdot \frac{1}{1+z^{2}} \\
& =\frac{1}{z} \cdot \frac{1}{z^{2}\left(1+\frac{1}{z^{2}}\right)} \\
& =\frac{1}{z^{3}} \cdot \frac{1}{1+\frac{1}{z^{2}}} \\
& =\frac{1}{z^{3}}\left(1-\frac{1}{z^{2}}+\left(\frac{1}{z^{2}}\right)^{2}-\left(\frac{1}{z^{2}}\right)^{3}+\cdots\right) \\
& =\frac{1}{z^{3}}-\frac{1}{z^{5}}+\frac{1}{z^{7}}-\frac{1}{z^{9}} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{z^{2 n+3}}
\end{aligned}
$$

2. (20 pts) Find all points at which

$$
f(z)=\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}}
$$

is differentiable. At what points is $f$ analytic? Explain.
3. (40 pts) Compute each of the following integrals:
(a) $\int_{C} \sin \left(\frac{1}{z}\right) d z$ where $C$ is the circle $|z|=1$ oriented counterclockwise.
(b) $\int_{C} \frac{e^{z}}{z\left(z^{2}+1\right)} d z$ where the contour $C$ is shown below:


## Solution:

(a) The function $f(z)=\sin \left(\frac{1}{z}\right)$ has a singular point at $z=0$, which lies inside $C$. The Laurent Series of $f(z)$ around $z=0$ in the region $0<|z|<\infty$ is

$$
f(z)=\sin \left(\frac{1}{z}\right)=\frac{1}{z}-\frac{1}{3!z^{3}}+\frac{1}{5!z^{5}}-\frac{1}{7!z^{7}}+\cdots
$$

We can see that $z=0$ is an essential singularity and that the residue at $z=0$ is

$$
\operatorname{Res}_{z=0} f(z)=c_{-1}=1
$$

Using the Cauchy Residue Theorem, the value of the integral is

$$
\int_{C} \sin \left(\frac{1}{z}\right) d z=2 \pi i \operatorname{Res}_{z=0} f(z)=2 \pi i
$$

(b) The function has singular points at $z=0, z=i$, and $z=-i$.
I. Let $\phi_{1}(z)=\frac{e^{z}}{z^{2}+1}$. Clearly, $\phi_{1}(z)$ is analytic and nonzero at $z=0$ and $f(z)=\frac{\phi_{1}(z)}{z}$. Therefore, $z=0$ is a simple pole and the residue is

$$
\operatorname{Res}_{z=0} f(z)=\phi_{1}(0)=1
$$

II. Let $\phi_{2}(z)=\frac{e^{z}}{z(z+i)}$. Clearly, $\phi_{2}(z)$ is analytic and nonzero at $z=i$ and $f(z)=\frac{\phi_{2}(z)}{z-i}$. Therefore, $z=i$ is a simple pole and the residue is

$$
\operatorname{Res}_{z=i} f(z)=\phi_{2}(i)=-\frac{e^{i}}{2}
$$

III. Let $\phi_{3}(z)=\frac{e^{z}}{z(z-i)}$. Clearly, $\phi_{3}(z)$ is analytic and nonzero at $z=-i$ and $f(z)=\frac{\phi_{3}(z)}{z+i}$.

Therefore, $z=-i$ is a simple pole and the residue is

$$
\operatorname{Res}_{z=-i} f(z)=\phi_{3}(-i)=-\frac{e^{-i}}{2}
$$

Using the Cauchy Residue Theorem, the value of the integral is

$$
\begin{aligned}
\int_{C} \frac{e^{z}}{z\left(z^{2}+1\right)} d z & =2 \pi i\left(\operatorname{Res}_{z=0} f(z)+\operatorname{Res}_{z=i} f(z)+\operatorname{Res}_{z=-i} f(z)\right) \\
& =2 \pi i\left(1-\frac{e^{i}}{2}-\frac{e^{-i}}{2}\right) \\
& =2 \pi i-\pi i e^{i}-\pi i e^{-i} \\
& =2 \pi i-\pi i(\cos 1+i \sin 1)-\pi i(\cos 1-i \sin 1) \\
& =2 \pi i(1-\cos 1)
\end{aligned}
$$

4. (30 pts) Compute the improper integral:

$$
I=\int_{0}^{\infty} \frac{d x}{x^{2}+x+1}
$$

by considering the integral:

$$
\int_{C} \frac{\log z}{z^{2}+z+1} d z
$$

where $C$ is the contour depicted in Figure 99 on p. 274.
5. (30 pts) Complete each of the following:
(a) Find all values of $z^{\pi}$ where $z=2+2 i$.
(b) Determine the principal value of $\log z$ where $z=-1-i$.
(c) How many solutions of $3 e^{z}-z=0$ are in the disk $|z| \leq 1$ ? Explain.

## Solution:

(c) Let $f(z)=3 e^{z}$ and $g(z)=-z$. Both functions are analytic on and inside the circle $|z|=1$. On the circle we have,

$$
|f(z)|=\left|3 e^{z}\right|=3 e^{x}>3 e^{-1}>1
$$

where the inequality is established by noting that $e^{x}$ takes on its smallest value when $x$ is most negative on the circle, which is at $x=-1$. We also have

$$
|g(z)|=|-z|=|z|=1
$$

on the circle $|z|=1$. Therefore, $|f(z)|>|g(z)|$ on the circle. Since $f(z)$ has no zeros inside the circle (it has no zeros anywhere), then $f(z)+g(z)=3 e^{z}-z$ has no zeros inside the circle.
6. ( 25 pts ) Evaluate the improper integral:

$$
\int_{0}^{\infty} \frac{x \sin a x}{x^{2}+b^{2}} d x
$$

Solution: To evaluate this integral consider the complex integral

$$
\int_{C} \frac{z e^{i a z}}{z^{2}+b^{2}} d z
$$

where $C$ is the contour shown below.
The integral over $C$ can be split into the sum of the integrals over each part of the contour as follows:

$$
\int_{C} \frac{z e^{i a z}}{z^{2}+b^{2}} d z=\int_{C_{1}} \frac{z e^{i a z}}{z^{2}+b^{2}} d z+\int_{C_{R}} \frac{z e^{i a z}}{z^{2}+b^{2}} d z
$$

Let's compute the value of each of the above three integrals in turn.
I. The integral over $C$ can be solved using the Cauchy Residue Theorem.

$$
\int_{C} \frac{z e^{i a z}}{z^{2}+b^{2}} d z=2 \pi i \operatorname{Res}_{z=b i} f(z)
$$

where we only evaluate the residue at $z=b i$ because this is the only singular point of the integrand that lies inside $C$.

By letting $\phi(z)=\frac{z e^{i a z}}{z+b i}$, we have

$$
f(z)=\frac{\phi(z)}{z-b i}
$$

where $\phi$ is analytic and nonzero at $z=b i$. Therefore, $z=b i$ is a simple pole and the residue is

$$
\operatorname{Res}_{z=b i} f(z)=\phi(b i)=\frac{(b i) e^{i a(b i)}}{b i+b i}=\frac{1}{2} e^{-a b}
$$

So the value of the integral over $C$ is

$$
\int_{C} \frac{z e^{i a z}}{z^{2}+b^{2}} d z=2 \pi i\left(\frac{1}{2} e^{-a b}\right)=\pi i e^{-a b}
$$

II. The integral over $C_{1}$ becomes

$$
\int_{C_{1}} \frac{z e^{i a z}}{z^{2}+b^{2}} d z=\int_{-R}^{R} \frac{x e^{i a x}}{x^{2}+b^{2}} d x
$$

after parametrizing the contour using $z=x, \quad-R \leq x \leq R$.
III. Finally, we use Jordan's Lemma to show that the integral over $C_{R}$ will tend to 0 . We note that $f(z)=\frac{1}{z\left(z^{2}+1\right)}$ is analytic at all points in the upper half plane that are exterior to the circle, say, $|z|=2$ and that

$$
|f(z)|=\frac{1}{|z|\left|z^{2}+1\right|} \leq \frac{1}{R\left(|z|^{2}-1\right)} \leq \frac{1}{R\left(R^{2}-1\right)}
$$

for all points $z$ on $C_{R}$. Then, since

$$
\lim _{R \rightarrow \infty} \frac{1}{R\left(R^{2}-1\right)}=0
$$

we know that

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) e^{i a z} d z=0
$$

Putting it all together we get

$$
\begin{aligned}
\int_{C} \frac{z e^{i a z}}{z^{2}+b^{2}} d z & =\int_{C_{1}} \frac{z e^{i a z}}{z^{2}+b^{2}} d z+\int_{C_{R}} \frac{z e^{i a z}}{z^{2}+b^{2}} d z \\
\pi i e^{-a b} & =\text { P.V. } \int_{-\infty}^{\infty} \frac{x e^{i a x}}{x^{2}+b^{2}} d x \\
\pi i e^{-a b} & =\text { P.V. } \int_{-\infty}^{\infty} \frac{x(\cos a x+i \sin a x)}{x^{2}+b^{2}} d x
\end{aligned}
$$

as $R \rightarrow \infty$. Taking the imaginary parts of both sides we get

$$
\pi e^{-a b}=\mathrm{P} . \mathrm{V} . \int_{-\infty}^{\infty} \frac{x \sin a x}{x^{2}+b^{2}}
$$

Note that the integrand of the right hand side is an even function, so the principal value is the actual value of the integral. Furthermore,

$$
\int_{-\infty}^{\infty} \frac{x \sin a x}{x^{2}+b^{2}} d x=2 \int_{0}^{\infty} \frac{x \sin a x}{x^{2}+b^{2}} d x
$$

so that our final answer is

$$
\int_{0}^{\infty} \frac{x \sin a x}{x^{2}+b^{2}} d x=\frac{\pi}{2} e^{-a b}
$$

