Contour Integrals

- 1. Evaluate $\int_C \frac{e^{\pi z}}{z^2 + 1} dz$ where C is the circle |z| = 2 oriented counterclockwise.
- 2. Evaluate $\int_C \frac{1}{(z+5)(z-1)^5} dz$ where C is the circle |z|=4 oriented counterclockwise.
- 3. Evaluate $\int_C \frac{1}{\sin z} dz$ where C is the rectangle with vertices at -1 i, 8 i, 8 + i, and -1 + i oriented counterclockwise.
- 4. Evaluate $\int_D z^8 e^{1/z} dz$ where D is the unit circle oriented counterclockwise.
- 5. Evaluate $\int_C \frac{z^2+1}{\cos z} dz$ where C is the circle $\left|z-\frac{\pi}{2}\right|=1$ oriented counterclockwise.
- 6. Evaluate $\int_C \frac{(\operatorname{Log} z)^2}{z^2 + 9} dz$ where C is the circle |z 3i| = 1 oriented counterclockwise.
- 7. Evaluate $\int_C \frac{\sin z}{z^2(2z-i)^3} dz$ where C is the circle |z|=2 oriented counterclockwise.
- 8. Evaluate $\int_C \frac{e^z + \cos z}{z^2 (z-i)^3} dz$ where C is the circle $|z-i| = \frac{1}{2}$ oriented counterclockwise.

Classifying Singular Points

9. Find all isolated singularities of each function below. Then classify each singularity as being a removable singularity, a pole of order N, or an essential singularity.

(a)
$$\frac{1}{z^3 + 1}$$
 (b) $\frac{z^2}{1 - \cos z}$ (c) $\frac{1}{\sin \frac{1}{z}}$ (d) $\frac{z^3 + 1}{z^2(z+1)}$ (e) $z^3 e^{1/z}$ (f) $\frac{z^2}{e^z - 1}$ (g) $\frac{1}{\sin(z-2)}$ (h) $\frac{\log(z+1)}{z}$

Taylor, Laurent Series

- 10. Find the Laurent Series for the function $f(z) = \frac{1}{z^3} \sin\left(\frac{1}{z^2}\right)$ on the region $0 < |z| < \infty$.
- 11. Find the Laurent Series for the function $f(z) = \frac{2}{(z-4)(z-6)}$
 - (a) on the annulus 4 < |z| < 6
 - (b) on the domain |z| > 6
- 12. Find the Taylor Series for $\frac{1}{z}$ about z = 1.
- 13. Find the Laurent Series of $f(z) = \frac{z+5}{z^2-2z-3}$ centered at the origin for |z| < 1 and for |z| > 3.
- 14. Determine all possible Taylor and Laurent series expansions for $f(z) = \frac{1}{z}$ about z = -2 and state their regions of validity.
- 15. Determine all possible Taylor and Laurent series expansions for $f(z) = \frac{1}{z(z-2)}$ about z=0 and state their regions of validity.
- 16. Determine all possible Taylor and Laurent series expansions for $f(z) = \frac{1}{z^2 + iz + 2}$ about z = i and state their regions of validity.

Improper Integrals

17. Compute the integral
$$\int_0^\infty \frac{dx}{(x^2+1)^2}$$
.

18. Compute the integral
$$\int_{-\infty}^{\infty} \frac{dx}{4x^2 + 2x + 1}.$$

19. Compute the integral
$$\int_0^\infty \frac{(\ln x)^2}{x^2+1} dx$$
.

20. Show that
$$\int_0^\infty \frac{x^2}{x^4 + x^2 + 1} dx = \frac{\pi}{\sqrt{3}}$$
.

21. Compute the integral
$$\int_{-\infty}^{\infty} \frac{\cos x}{x^2 + a^2} dx$$
, $a > 0$.

22. Show that
$$\int_0^\infty \frac{1}{(x^2 + a^2)(x^2 + b^2)} dx = \frac{\pi}{2ab(a+b)}$$
 where $a, b > 0$ and $a \neq b$.

23. Compute the value of
$$\int_{-\infty}^{\infty} \frac{x^2}{(1+x^2)(4+x^2)} dx.$$

24. Show that
$$\int_0^\infty \frac{\ln x}{1 + x^4} \, dx = \frac{\pi^2}{8\sqrt{2}}$$
.

Trigonometric Integrals

25. Compute the integral
$$\int_0^{2\pi} \frac{d\theta}{a + \cos \theta}$$
, $a > 1$.

26. Determine the value of
$$\int_0^{2\pi} \frac{d\theta}{4 + 3\cos\theta}.$$

27. Compute the integral
$$\int_{-\pi}^{\pi} \sin^2 \theta \, d\theta$$
 using a contour integral.

- 28. Evaluate the integral $\frac{1}{2\pi} \int_{0}^{2\pi} \frac{d\theta}{1 2a\cos\theta + a^2}$, 0 < a < 1.
- 29. Show that $\int_0^{2\pi} \frac{\sin^2 \theta}{5 + 4\cos \theta} d\theta = \frac{\pi}{4}.$
- 30. Evaluate the integral $\int_0^{\pi} \cos^4 \theta \, d\theta$ using a contour integral.
- 31. Compute the integral $\int_0^{\pi} \frac{d\theta}{1 + \cos^2 \theta}$.
- 32. Show that $\int_0^{2\pi} \frac{d\theta}{2 + 2\sin 2\theta} = \frac{2\pi}{\sqrt{3}}.$

Inverse Laplace Transform

33. Use the formula for the Inverse Laplace Transform to evaluate the inverse of each of the following functions

(a)
$$\frac{1}{s^2}$$

(b)
$$\frac{1}{s^2+4}$$

(a)
$$\frac{1}{s^2}$$
 (b) $\frac{1}{s^2+4}$ (c) $\frac{1}{(s-1)^2+9}$ (d) $\frac{s}{(s^2+1)^2}$

(d)
$$\frac{s}{(s^2+1)^2}$$

Rouché's Theorem

- 34. Show that $z^5 + 2z^2 + 3z + 2$ has five zeros, counting multiplicities, inside the circle |z| = 2.
- 35. Determine the number of zeros (counting multiplicities) of $z^4 + 7z + 5$ that lie inside the circle |z|=1.
- 36. Find the number of zeros (counting multiplicities) of the polynomial $2z^8 + 3z^5 9z^3 + 2$ inside the annulus 1 < |z| < 2.
- 37. Determine the number of zeros (counting multiplicities) of the polynomial $z^5 + 3z^3 +$ $z^2 + 1$ inside the circle |z| = 2.

Möbius Transformations

- 38. Find a Möbius transformation f(z) that maps the points 1, 2, and i to the points i, 1, and 2, respectively. That is, f(1) = i, f(2) = 1, and f(i) = 2.
- 39. Find a Möbius transformation f(z) that maps the points -i, 0, and i to the points -1, i, and 1, respectively.
- 40. Find a Möbius transformation f(z) that maps the points 1, 0, and -1 to the points i, ∞ , and 1, respectively.