1. Find the modulus and conjugate of each complex number below.
(a) $-2+i$
(b) $(2+i)(4+3 i)$
(c) $\frac{3-i}{\sqrt{2}+3 i}$
2. Express each complex number below in exponential form. In each case, use the principal argument of the number.
(a) $2 i$
(b) $1+i$
(c) $-2+i \sqrt{12}$
3. Use DeMoivre's Theorem to expand $(1+i)^{6}$. Write your answer in the form $a+b i$.
4. Show that $\overline{e^{i \theta}}=e^{-i \theta}$.
5. Find all solutions to $z^{4}=-16$.
6. Solve the equation

$$
z^{4 / 3}+2 i=0
$$

for z and plot the roots in the complex plane.
7. Write the function $f(z)=z^{3}+z+1$ in the form $f(x, y)=u(x, y)+i v(x, y)$.
8. Suppose that $f(z)=x^{2}-y^{2}-2 y+i(2 x-2 x y)$, where $z=x+i y$. Use the expressions

$$
x=\frac{z+\bar{z}}{2}, \quad y=\frac{z-\bar{z}}{2 i}
$$

to write $f(z)$ in terms of z and simplify the result.
9. Find the image of the semi-infinite strip $x \geq 0,0 \leq y \leq \pi$ under the transformation $w=e^{z}$ and label corresponding portions of the boundaries.

