1. Find and sketch the image of the rectangle $0<x<1,-\frac{\pi}{2}<y<\frac{\pi}{2}$ under the transformation $w=e^{z}$.
2. Sketch the following sets and determine whether they are open, closed, or neither.
(a) $|z+3|<2$
(b) $|\operatorname{Im} z|<1$
(c) $0<|z-1|<2$
(d) $\operatorname{Re} z=1$
(e) $|z-4| \geq|z|$
3. Show that
(a) $\lim _{z \rightarrow 3} \frac{2}{z-3}=\infty$
(b) $\lim _{z \rightarrow \infty} \frac{z^{2}+1}{3 z^{2}-4}=\frac{1}{3}$
4. Find $f^{\prime}(z)$ for the following functions:
(a) $f(z)=4 z^{2}+5 z-3$
(b) $f(z)=\left(2-z^{3}\right)^{2}$
(c) $f(z)=\frac{z+2}{3 z-2}$ where $z \neq \frac{2}{3}$
5. Show that $f^{\prime}(z)$ does not exist at any point z when $f(z)=\operatorname{Re} z$.
6. Let $z=x+i y$. Determine the values of z for which the Cauchy-Riemann equations are satisfied for the following functions:
(a) $f(z)=e^{-x} e^{-i y}$
(b) $f(z)=2 x+i x y^{2}$
(c) $f(z)=x^{2}+i y^{2}$
(d) $f(z)=\operatorname{Im} z$
