- 1. Find and sketch the image of the rectangle 0 < x < 1, $-\frac{\pi}{2} < y < \frac{\pi}{2}$ under the transformation $w = e^z$.
- 2. Sketch the following sets and determine whether they are open, closed, or neither.
 - (a) |z+3| < 2
 - (b) |Im z| < 1
 - (c) 0 < |z 1| < 2
 - (d) $\operatorname{Re} z = 1$
 - (e) $|z 4| \ge |z|$
- 3. Show that
 - (a) $\lim_{z \to 3} \frac{2}{z-3} = \infty$ (b) $\lim_{z \to \infty} \frac{z^2 + 1}{3z^2 - 4} = \frac{1}{3}$
- 4. Find f'(z) for the following functions:
 - (a) $f(z) = 4z^2 + 5z 3$ (b) $f(z) = (2 - z^3)^2$ (c) $f(z) = \frac{z+2}{3z-2}$ where $z \neq \frac{2}{3}$
- 5. Show that f'(z) does not exist at any point z when $f(z) = \operatorname{Re} z$.
- 6. Let z = x + iy. Determine the values of z for which the Cauchy-Riemann equations are satisfied for the following functions:
 - (a) $f(z) = e^{-x}e^{-iy}$
 - (b) $f(z) = 2x + ixy^2$
 - (c) $f(z) = x^2 + iy^2$
 - (d) $f(z) = \operatorname{Im} z$