1. Let a function $f(z)=u+i v$ be differentiable at z_{0}.
(a) Use the Chain Rule and the formulas $x=r \cos \theta$ and $y=r \sin \theta$ to show that

$$
u_{x}=u_{r} \cos \theta-u_{\theta} \frac{\sin \theta}{r}, \quad v_{x}=v_{r} \cos \theta-v_{\theta} \frac{\sin \theta}{r}
$$

(b) Then use the Cauchy-Riemann equations in polar coordinates

$$
r u_{r}=v_{\theta}, \quad u_{\theta}=-r v_{r}
$$

and the fact that $f^{\prime}\left(z_{0}\right)=u_{x}+i v_{x}$ to show that

$$
f^{\prime}\left(z_{0}\right)=e^{-i \theta}\left(u_{r}+i v_{r}\right)
$$

2. Show that the function $f(z)=e^{-y} \sin x-i e^{-y} \cos x$ is entire.
3. Show that the function $f(z)=x y+i y$ is not analytic at any point in the complex plane.
4. Let $u(x, y)=\frac{y}{x^{2}+y^{2}}$.
(a) Show that $u(x, y)$ is harmonic in the domain D which is the set of all points z in the complex plane excluding $z=0$.
(b) Find the most general harmonic conjugate v of u.
5. Find all values of each expression.
(a) $\exp \left(2-\frac{\pi}{4} i\right)$
(b) $\log (-2+2 i)$
(c) $\log (e i)$
6. Show that the function $f(z)=e^{2 z}$ is entire and write an expression for $f^{\prime}(z)$ in terms of z.
7. Show that $\log (-1+i)^{2} \neq 2 \log (-1+i)$.
