1. Find all values of each expression below.
(a) $(1-i)^{i}$
(b) $\cos (1-i)$
(c) $\sin ^{-1}(1-i)$
2. Prove that $\sin (2 z)=2 \sin z \cos z$ by using the definitions of $\sin z$ and $\cos z$.
3. Find the values of z for which $\cos z=0$ by using the fact that

$$
|\cos z|^{2}=\cos ^{2} x+\sinh ^{2} y \quad \text { where } \quad \sinh y=\frac{e^{y}-e^{-y}}{2}
$$

4. Show that $f(z)=\sin (\bar{z})$ is analytic nowhere.
5. Evaluate the integral

$$
\int_{C} e^{z} d z
$$

where C is the contour consisting of the two straight-line segments: (1) from $z=i$ to $z=1+i$ and (2) from $z=1+i$ to $z=1-2 i$.
6. Evaluate the integral

$$
\int_{C}\left(z^{2}-1\right) d z
$$

where C is the semicircle $z=e^{i t},-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$ oriented counterclockwise.
7. Show that

$$
\left|\int_{C} \frac{2 z+1}{z^{2}-4} d z\right| \leq \pi
$$

where C is the upper half of the circle $|z|=1$ oriented counterclockwise. Justify your answer.
8. Find an upper bound on

$$
\left|\int_{C} \frac{d z}{z^{2}+1}\right|
$$

where C is the circle $|z-i|=1$ oriented counterclockwise. Justify your answer.

