1. Find the radius of convergence for each power series below.
(a) $\sum_{n=2}^{\infty} n^{2}(z-3)^{n}$
(b) $\sum_{n=4}^{\infty} e^{n}(z+i)^{n}$
2. What is the radius of convergence of the Taylor Series of $f(z)=\frac{1}{z^{2}-3 z+2}$ about $z=0$? about $z=3 i$?
3. Find the Taylor Series of $f(z)=\frac{z}{1+z^{2}}$ about $z=0$ and state the region of validity. Write your answer in summation form.
4. Find the Laurent Series of $f(z)=\frac{z}{1+z}$ about $z=0$ in the region $1<|z|<\infty$. Write your answer in summation form.
5. Determine all regions for which $f(z)$ has a Taylor Series expansion about $z=2$. Then determine all regions for which $f(z)$ has a Laurent Series expansion about $z=2$.

DO NOT FIND THE SERIES EXPANSIONS!

(a) $f(z)=e^{z}$
(b) $f(z)=\frac{1}{z^{2}+1}$
(c) $f(z)=\frac{1}{z(z+1)(z+2 i)}$
6. Find the Laurent Series of $f(z)=\frac{1}{z^{2}-4}$ about $z=-1$ in the region $1<|z+1|<3$. It is not necessary to write your answer in summation form. However, you should write out sufficiently many terms so that the pattern is clear.

