1. Find the modulus and conjugate of each complex number below.
(a) $-2+i$
(b) $(2+i)(4+3 i)$
(c) $\frac{3-i}{\sqrt{2}+3 i}$

## Solution:

(a) For the complex number $z=-2+i$, the modulus is

$$
|z|=\sqrt{(-2)^{2}+1^{2}}=\sqrt{5}
$$

and the conjugate is

$$
\bar{z}=-2-i
$$

(b) For the complex number $z=(2+i)(4+3 i)=5+10 i$, the modulus is

$$
|z|=\sqrt{5^{2}+10^{2}}=5 \sqrt{5}
$$

and the conjugate is

$$
\bar{z}=5-10 i
$$

(c) For the complex number $z=\frac{3-i}{\sqrt{2}+3 i}$, the modulus is

$$
|z|=\frac{|3-i|}{|\sqrt{2}+3 i|}=\frac{\sqrt{3^{2}+(-1)^{2}}}{\sqrt{(\sqrt{2})^{2}+3^{2}}}=\frac{\sqrt{10}}{\sqrt{11}}
$$

and the conjugate is

$$
\bar{z}=\frac{\overline{3-i}}{\sqrt{2}+3 i}=\frac{3+i}{\sqrt{2}-3 i}=\frac{(3+i)(\sqrt{2}+3 i)}{(\sqrt{2}-3 i)(\sqrt{2}+3 i)}=\frac{3 \sqrt{2}-3}{11}+i \frac{\sqrt{2}+9}{11}
$$

2. Express each complex number below in exponential form. In each case, use the principal argument of the number.
(a) $2 i$
(b) $1+i$
(c) $-2+i \sqrt{12}$

## Solution:

(a) The modulus of $z=2 i$ is

$$
|z|=\sqrt{0^{2}+2^{2}}=2
$$

The principal argument $\Theta$ is found from the equations

$$
\begin{aligned}
& \cos \Theta=\frac{x}{|z|}=\frac{0}{2}=0 \\
& \sin \Theta=\frac{y}{|z|}=\frac{2}{2}=1
\end{aligned}
$$

and is $\Theta=\frac{\pi}{2}$. Therefore, the exponential form of $z$ is

$$
z=2 i=2 e^{i(\pi / 2)}
$$

(b) The modulus of $z=1+i$ is

$$
|z|=\sqrt{1^{2}+1^{2}}=\sqrt{2}
$$

The principal argument $\Theta$ is found from the equations

$$
\begin{aligned}
& \cos \Theta=\frac{x}{|z|}=\frac{1}{\sqrt{2}} \\
& \sin \Theta=\frac{y}{|z|}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

and is $\Theta=\frac{\pi}{4}$. Therefore, the exponential form of $z$ is

$$
z=1+i=\sqrt{2} e^{i(\pi / 4)}
$$

(c) The modulus of $z=-2+i \sqrt{12}$ is

$$
|z|=\sqrt{(-2)^{2}+(\sqrt{12})^{2}}=\sqrt{4+12}=4
$$

The principal argument $\Theta$ is found from the equations

$$
\begin{aligned}
& \cos \Theta=\frac{x}{|z|}=\frac{-2}{4}=-\frac{1}{2} \\
& \sin \Theta=\frac{y}{|z|}=\frac{\sqrt{12}}{4}=\frac{\sqrt{3}}{2}
\end{aligned}
$$

and is $\Theta=\frac{2 \pi}{3}$. Therefore, the exponential form of $z$ is

$$
z=-2+i \sqrt{12}=4 e^{i(2 \pi / 3)}
$$

3. Use DeMoivre's Theorem to expand $(1+i)^{6}$. Write your answer in the form $a+b i$.

Solution: The modulus and principal argument of $1+i$ are $|z|=r=\sqrt{2}$ and $\Theta=\frac{\pi}{4}$.
Then, using DeMoivre's Theorem we have

$$
\begin{aligned}
z^{6} & =r^{6}[\cos (6 \Theta)+i \sin (6 \Theta)] \\
(1+i)^{6} & =(\sqrt{2})^{6}\left[\cos \left(6 \cdot \frac{\pi}{4}\right)+i \sin \left(6 \cdot \frac{\pi}{4}\right)\right] \\
& =8(0-i) \\
& =-8 i
\end{aligned}
$$

4. Show that $\overline{e^{i \theta}}=e^{-i \theta}$.

Solution: Starting with the left hand side we have

$$
\overline{e^{i \theta}}=\overline{\cos \theta+i \sin \theta}=\cos \theta-i \sin \theta
$$

Now use the negative angle identities

$$
\cos (-\theta)=\cos \theta, \quad \sin (-\theta)=-\sin \theta
$$

to write $\cos \theta-i \sin \theta$ as

$$
\overline{e^{i \theta}}=\cos \theta-i \sin \theta=\cos (-\theta)+i \sin (-\theta)=e^{i(-\theta)}=e^{-i \theta}
$$

5. Find all solutions to $z^{4}=-16$.

Solution: The modulus and principal argument of -16 are $|z|=r=16$ and $\Theta=\pi$, respectively. The fourth roots of -16 are given by the formula

$$
z=r^{1 / 4}\left[\cos \left(\frac{\Theta}{4}+\frac{2 k \pi}{4}\right)+i \sin \left(\frac{\Theta}{4}+\frac{2 k \pi}{4}\right)\right], \quad \text { for } \quad k=0,1,2,3
$$

The roots are then

$$
\begin{aligned}
& z_{1}=16^{1 / 4}\left[\cos \left(\frac{\pi}{4}+\frac{2(0) \pi}{4}\right)+i \sin \left(\frac{\pi}{4}+\frac{2(0) \pi}{4}\right)\right]=2\left(\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right)=\sqrt{2}+i \sqrt{2} \\
& z_{2}=16^{1 / 4}\left[\cos \left(\frac{\pi}{4}+\frac{2(1) \pi}{4}\right)+i \sin \left(\frac{\pi}{4}+\frac{2(1) \pi}{4}\right)\right]=2\left(-\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right)=-\sqrt{2}+i \sqrt{2} \\
& z_{3}=16^{1 / 4}\left[\cos \left(\frac{\pi}{4}+\frac{2(2) \pi}{4}\right)+i \sin \left(\frac{\pi}{4}+\frac{2(2) \pi}{4}\right)\right]=2\left(-\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}\right)=-\sqrt{2}-i \sqrt{2} \\
& z_{4}=16^{1 / 4}\left[\cos \left(\frac{\pi}{4}+\frac{2(3) \pi}{4}\right)+i \sin \left(\frac{\pi}{4}+\frac{2(3) \pi}{4}\right)\right]=2\left(\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}\right)=\sqrt{2}-i \sqrt{2}
\end{aligned}
$$

6. Solve the equation

$$
z^{4 / 3}+2 i=0
$$

for $z$ and plot the roots in the complex plane.

Solution: The solutions to the equation are given by

$$
z=(-2 i)^{3 / 4}=\left[(-2 i)^{3}\right]^{1 / 4}=(8 i)^{1 / 4}
$$

The modulus and principal argument of $8 i$ are $|z|=r=8$ and $\Theta=\frac{\pi}{2}$, respectively.
The fourth roots of $8 i$ are given by the formula

$$
z=r^{1 / 4}\left[\cos \left(\frac{\Theta}{4}+\frac{2 k \pi}{4}\right)+i \sin \left(\frac{\Theta}{4}+\frac{2 k \pi}{4}\right)\right], \quad \text { for } \quad k=0,1,2,3
$$

The roots are then

$$
\begin{aligned}
& z_{1}=8^{1 / 4}\left[\cos \left(\frac{\pi / 2}{4}+\frac{2(0) \pi}{4}\right)+i \sin \left(\frac{\pi}{4}+\frac{2(0) \pi}{4}\right)\right]=\sqrt[4]{8}\left(\cos \frac{\pi}{8}+i \sin \frac{\pi}{8}\right) \\
& z_{2}=8^{1 / 4}\left[\cos \left(\frac{\pi / 2}{4}+\frac{2(1) \pi}{4}\right)+i \sin \left(\frac{\pi}{4}+\frac{2(1) \pi}{4}\right)\right]=\sqrt[4]{8}\left(\cos \frac{5 \pi}{8}+i \sin \frac{5 \pi}{8}\right) \\
& z_{3}=8^{1 / 4}\left[\cos \left(\frac{\pi / 2}{4}+\frac{2(2) \pi}{4}\right)+i \sin \left(\frac{\pi}{4}+\frac{2(2) \pi}{4}\right)\right]=\sqrt[4]{8}\left(\cos \frac{9 \pi}{8}+i \sin \frac{9 \pi}{8}\right) \\
& z_{4}=8^{1 / 4}\left[\cos \left(\frac{\pi / 2}{4}+\frac{2(3) \pi}{4}\right)+i \sin \left(\frac{\pi}{4}+\frac{2(3) \pi}{4}\right)\right]=\sqrt[4]{8}\left(\cos \frac{13 \pi}{8}+i \sin \frac{13 \pi}{8}\right)
\end{aligned}
$$

and lie on a circle of radius $\sqrt[4]{8}$ centered at the origin, $\frac{\pi}{2}$ radians apart.

7. Write the function $f(z)=z^{3}+z+1$ in the form $f(x, y)=u(x, y)+i v(x, y)$.

Solution: To write $f(z)$ in terms of $x$ and $y$ we substitute $z=x+i y$ and simplify.

$$
\begin{aligned}
f(z) & =(x+i y)^{3}+(x+i y)+1 \\
& =x^{3}+3 x^{2}(i y)+3 x(i y)^{2}+(i y)^{3}+x+i y+1 \\
& =x^{3}+i\left(3 x^{2} y\right)-3 x y^{2}-i\left(y^{3}\right)+x+i(y)+1 \\
& =\left(x^{3}-3 x y^{2}+x+1\right)+i\left(3 x^{2} y-y^{3}+y\right)
\end{aligned}
$$

8. Suppose that $f(z)=x^{2}-y^{2}-2 y+i(2 x-2 x y)$, where $z=x+i y$. Use the expressions

$$
x=\frac{z+\bar{z}}{2}, \quad y=\frac{z-\bar{z}}{2 i}
$$

to write $f(z)$ in terms of $z$ and simplify the result.

Solution: Substituting the above expressions into $f(z)$ and simplifying we get

$$
\begin{aligned}
f(z) & =\left(\frac{z+\bar{z}}{2}\right)^{2}-\left(\frac{z-\bar{z}}{2 i}\right)^{2}-2\left(\frac{z-\bar{z}}{2 i}\right)+i\left[2\left(\frac{z+\bar{z}}{2}\right)-2\left(\frac{z+\bar{z}}{2}\right)\left(\frac{z-\bar{z}}{2 i}\right)\right] \\
& =\frac{1}{4}\left(z^{2}+2 z \bar{z}+\bar{z}^{2}\right)+\frac{1}{4}\left(z^{2}-2 z \bar{z}+\bar{z}^{2}\right)+i(z-\bar{z})+i\left[z+\bar{z}+i\left(\frac{1}{2} z^{2}-\frac{1}{2} \bar{z}^{2}\right)\right] \\
& =\frac{1}{2} z^{2}+\frac{1}{2} \bar{z}^{2}-\frac{1}{2} z^{2}+\frac{1}{2} \bar{z}^{2}+i(z-\bar{z}+z+\bar{z}) \\
& =\bar{z}^{2}+i(2 z)
\end{aligned}
$$

9. Find the image of the semi-infinite strip $x \geq 0,0 \leq y \leq \pi$ under the transformation $w=e^{z}$ and label corresponding portions of the boundaries.

Solution: We did this in class.

