
MATH 417 Homework 3

Instructor: D. Cabrera Due June 30

1. Let a function f(z) = u + iv be differentiable at z0.

(a) Use the Chain Rule and the formulas x = r cos θ and y = r sin θ to show that

ux = ur cos θ − uθ

sin θ

r
, vx = vr cos θ − vθ

sin θ

r

(b) Then use the Cauchy-Riemann equations in polar coordinates

rur = vθ, uθ = −rvr

and the fact that f ′(z0) = ux + ivx to show that

f ′(z0) = e−iθ(ur + ivr)

Solution:

(a) Using the Chain Rule we have

∂u

∂r
=

∂u

∂x

∂x

∂r
+

∂u

∂y

∂y

∂r

ur = ux cos θ + uy sin θ (1)

and

∂u

∂θ
=

∂u

∂x

∂x

∂θ
+

∂u

∂y

∂y

∂θ

uθ = ux(−r sin θ) + uy(r cos θ) (2)

By multiplying Equation (1) by r cos θ and Equation (2) by sin θ and subtracting
(2) from (1) we eliminate uy and get

urr cos θ − uθ sin θ = uxr cos2 θ + uxr sin2 θ

urr cos θ − uθ sin θ = uxr

ur cos θ − uθ

sin θ

r
= ux (3)

which is what we wanted to show. By replacing u with v we get the other equation

vr cos θ − vθ

sin θ

r
= vx (4)



(b) We will now use the Cauchy-Riemann equations to replace the uθ term in Equation
(3) with −rvr and the vθ term in Equation (4) with rur and get

ux = ur cos θ − (−rvr)
sin θ

r

= ur cos θ + vr sin θ

vx = vr cos θ − rur

sin θ

r

= vr cos θ − ur sin θ

Finally, we plug these expressions for ux and vx into the derivative f ′(z) = ux+ivx

and simplify to get f ′(z) in polar coordinates.

f ′(z) = ux + ivx

= ur cos θ + vr sin θ + i(vr cos θ − ur sin θ)

= ur(cos θ − i sin θ) + vr(sin θ + i cos θ)

= ur(cos θ − i sin θ) + ivr(cos θ − i sin θ)

= ur(cos(−θ) + i sin(−θ)) + ivr(cos(−θ) + i sin(−θ))

= ure
−iθ + ivre

−iθ

f ′(z) = e−iθ(ur + ivr)

2. Show that the function f(z) = e−y sin x − ie−y cos x is entire.

Solution: Let u(x, y) = e−y sin x and v(x, y) = −e−y cos x. We can see that u and v

have continuous derivatives of all orders everywhere in the complex plane. Furthermore,
the first partial derivatives of u and v are

ux = e−y cos x, vy = e−y cos x

uy = −e−y sin x, vx = e−y sin x

so we can see that the Cauchy-Riemann equations (ux = vy, uy = −vx) are satisfied
for all x,y. Therefore, f ′(z) exists for all z in the complex plane and f(z) is entire.

3. Show that the function f(z) = xy + iy is not analytic at any point in the complex
plane.

Solution: Let u(x, y) = xy and v(x, y) = y. The functions have continuous partial
derivatives of all orders everywhere in the complex plane and the first partial derivatives
are

ux = y, vy = 1

uy = x, vx = 0



The Cauchy-Riemann equations (ux = vy, uy = −vx) are only satisfied when y = 1
and x = 0. Recall that a function is analytic at a point z0 if it is analytic at every point
in some neighborhood of z0. Since f ′(z) exists only at z = i, there is no neighborhood
of z = i which has the property that f ′(z) exists at every point in that neighborhood.
Thus, f(z) is analytic nowhere.

4. Let u(x, y) =
y

x2 + y2
.

(a) Show that u(x, y) is harmonic in the domain D which is the set of all points z in
the complex plane excluding z = 0.

(b) Find the most general harmonic conjugate v of u.

Solution:

(a) First, we note that u(x, y) has continuous first and second derivatives at every
point in D. Now we must show that uxx + uyy = 0. The first and second partial
derivatives are

ux = − 2xy

(x2 + y2)2
, uxx =

6x2y − 2y3

(x2 + y2)3

uy =
x2 − y2

(x2 + y2)2
, uyy =

2y3 − 6x2y

(x2 + y2)3

Clearly, the derivatives uxx and uyy add up to 0. Therefore, u(x, y) is harmonic
in D.

(b) A harmonic conjugate v(x, y) of u(x, y) must satisfy the Cauchy-Riemann equa-
tions. So we must have

vy = ux = − 2xy

(x2 + y2)2

vx = −uy =
y2 − x2

(x2 + y2)2

Integrating the first of the above equations with respect to y we have

vy = − 2xy

(x2 + y2)2

∫

vy dy = −
∫

2xy

(x2 + y2)2
dy

v(x, y) = −
∫

2xy

(x2 + y2)2
dy



To evaluate the integral we let w = x2 + y2, dw = 2y dy.

v(x, y) = −
∫

x

w2
dw

v(x, y) =
x

w
+ φ(x)

v(x, y) =
x

x2 + y2
+ φ(x)

To find the function φ(x) we differentiate the above expression for v(x, y) with
respect to x to get

∂

∂x
v(x, y) =

∂

∂x

x

x2 + y2
+

∂

∂x
φ(x)

vx =
y2 − x2

(x2 + y2)2
+ φ′(x)

The second of the Cauchy-Riemann equations tells us that

vx =
y2 − x2

(x2 + y2)2

so it must be the case that φ′(x) = 0, i.e. φ(x) = C = constant. Therefore, the
most general harmonic conjugate of u(x, y) is

v(x, y) =
x

x2 + y2
+ C

5. Find all values of each expression.

(a) exp
(

2 − π

4
i
)

(b) log (−2 + 2i)

(c) Log (ei)

Solution:

(a) exp
(

2 − π

4
i
)

= e2
[

cos
(

−π

4

)

+ i sin
(

−π

4

)]

= e2

(√
2

2
− i

√
2

2

)

(b) The modulus and principal argument of z = −2 + 2i are

r = 2
√

2, Θ =
3π

4



The logarithm of z is then

log z = ln r + i (Θ + 2kπ)

log(−2 + 2i) = ln
(

2
√

2
)

+ i

(

3π

4
+ 2kπ

)

where k = 0,±1,±2, . . ..

(c) The modulus and principal argument of z = ei are

r = e, Θ =
π

2

The principal logarithm of z is then

Log z = ln r + iΘ

Log (ei) = ln e + i
π

2

Log (ei) = 1 + i
π

2

6. Show that the function f(z) = e2z is entire and write an expression for f ′(z) in terms
of z.

Solution: It is enough to say that g(z) = 2z and h(z) = ez are entire so their composite
f(z) = h(g(z)) = e2z is also entire. Using the Chain Rule, the derivative f ′(z) is

f ′(z) = 2e2z

We can also solve the problem by writing f(z) in terms of x and y.

f(z) = e2(x+iy) = e2x cos 2y + ie2x sin 2y

Note that the functions u(x, y) = e2x cos 2y and v(x, y) = e2x sin 2y have continuous
first derivatives everywhere in the complex plane. Also, the Cauchy-Riemann equations
are satisfied for all x, y as

ux = vy = 2e2x cos 2y

uy = −vx = −2e2x sin 2y

Therefore, f(z) = e2z is entire. The derivative f ′(z) is

f ′(z) = ux + ivx

f ′(z) = 2e2x cos 2y + i(2e2x sin 2y)

f ′(z) = 2e2xei(2y)

f ′(z) = 2e2(x+iy)

f ′(z) = 2e2z



7. Show that Log (−1 + i)2 6= 2 Log (−1 + i).

Solution: First, we evaluate the left hand side. The number (−1 + i)2 can be rewrit-

ten as −2i. The modulus and principal argument of −2i are r = 2 and Θ = −π

2
,

respectively. Therefore, the principal logarithm of (−1 + i)2 is

Log (−1 + i)2 = ln 2 − i
π

2

Next, we evaluate the right hand side. The modulus and principal argument of −1 + i

are r =
√

2 and Θ =
3π

4
, respectively. Therefore, twice the principal logarithm of

−1 + i is

2 Log (−1 + i) = 2

(

ln
√

2 + i
3π

4

)

= ln 2 + i
3π

2

Clearly, Log(−1 + i)2 6= 2 Log(−1 + i).


