1. Find all values of each expression below.
(a) $(1-i)^{i}$
(b) $\cos (1-i)$
(c) $\sin ^{-1}(2)$

Solution:

(a) Here we use the formula

$$
\begin{aligned}
z^{c} & =e^{c \log z} \\
(1-i)^{i} & =e^{i \log (1-i)}
\end{aligned}
$$

The modulus of $1-i$ is $r=\sqrt{2}$ and the principal argument is $\Theta=-\frac{\pi}{4}$. Therefore,

$$
\log (1-i)=\ln \sqrt{2}+i\left(-\frac{\pi}{4}+2 k \pi\right), \quad k=0, \pm 1, \pm 2, \ldots
$$

Multiplying $\log (1-i)$ by i we get

$$
\begin{aligned}
& i \log (1-i)=i\left[\ln \sqrt{2}+i\left(-\frac{\pi}{4}+2 k \pi\right)\right] \\
& i \log (1-i)=\left(\frac{\pi}{4}+2 k \pi\right)+i(\ln \sqrt{2})
\end{aligned}
$$

Finally, we exponentiate $i \log (1-i)$ to get

$$
\begin{aligned}
& (1-i)^{i}=e^{\pi / 4+2 k \pi+i \ln \sqrt{2}} \\
& (1-i)^{i}=e^{\pi / 2+2 k \pi} e^{i \ln \sqrt{2}} \\
& (1-i)^{i}=e^{\pi / 4+2 k \pi}[\cos (\ln \sqrt{2})+i \sin (\ln \sqrt{2})]
\end{aligned}
$$

where $k=0, \pm 1, \pm 2, \ldots$.
(b) Here we can use either

$$
\begin{gathered}
\cos z=\frac{e^{i z}+e^{-i z}}{2} \\
\cos (1-i)=\frac{e^{i(1-i)}+e^{-i(1-i)}}{2} \\
\cos (1-i)=\frac{e^{1+i}+e^{-1-i}}{2}
\end{gathered}
$$

or

$$
\begin{aligned}
\cos z & =\cosh x \cos y-i \sinh x \sin y \\
\cos (1-i) & =\cosh 1 \cos (-1)-i \sinh 1 \sin (-1) \\
\cos (1-i) & =\cosh 1 \cos 1+i \sinh 1 \sin 1
\end{aligned}
$$

(c) Here we use the formula

$$
\begin{aligned}
& \sin ^{-1} z=-i \log \left[i z+\left(1-z^{2}\right)^{1 / 2}\right] \\
& \sin ^{-1} 2=-i \log [2 i \pm \sqrt{3} i] \\
& \sin ^{-1} 2=-i \log [(2 \pm \sqrt{3}) i]
\end{aligned}
$$

If we take the positive root, then we have

$$
\begin{aligned}
& \sin ^{-1} 2=-i \log [(2+\sqrt{3}) i] \\
& \sin ^{-1} 2=-i\left[\ln (2+\sqrt{3})+i\left(\frac{\pi}{2}+2 k \pi\right)\right] \\
& \sin ^{-1} 2=\frac{\pi}{2}+2 k \pi-i \ln (2+\sqrt{3})
\end{aligned}
$$

If we take the negative root, then we have

$$
\begin{aligned}
& \sin ^{-1} 2=-i \log [(2-\sqrt{3}) i] \\
& \sin ^{-1} 2=-i\left[\ln (2-\sqrt{3})+i\left(\frac{\pi}{2}+2 k \pi\right)\right] \\
& \sin ^{-1} 2=\frac{\pi}{2}+2 k \pi-i \ln (2-\sqrt{3})
\end{aligned}
$$

where $k=0, \pm 1, \pm 2, \ldots$.
2. Prove that $\sin (2 z)=2 \sin z \cos z$ by using the definitions of $\sin z$ and $\cos z$.

Solution: Using the definition of $\sin z$ we have

$$
\begin{aligned}
& \sin (2 z)=\frac{e^{i(2 z)}-e^{-i(2 z)}}{2 i} \\
& \sin (2 z)=\frac{\left(e^{i z}-e^{-i z}\right)\left(e^{i z}+e^{-i z}\right)}{2 i} \\
& \sin (2 z)=2\left(\frac{e^{i z}-e^{-i z}}{2 i}\right)\left(\frac{e^{i z}+e^{-i z}}{2}\right) \\
& \sin (2 z)=2 \sin z \cos z
\end{aligned}
$$

where in the last step, we used the definitions of $\sin z$ and $\cos z$.
3. Find the values of z for which $\cos z=0$ by using the fact that

$$
|\cos z|^{2}=\cos ^{2} x+\sinh ^{2} y \quad \text { where } \quad \sinh y=\frac{e^{y}-e^{-y}}{2}
$$

Solution: If $\cos z=0$ then $|\cos z|=0$. So it must be the case that both

$$
\cos x=0 \quad \text { and } \quad \sinh y=0
$$

happen simultaneously. From the first equation we have

$$
x=\frac{(2 k+1) \pi}{2}, \quad k=0, \pm 1, \pm 2, \ldots
$$

From the second equation we have $y=0$. Therefore, $\cos z=0$ when

$$
z=\frac{(2 k+1) \pi}{2}, \quad k=0, \pm 1, \pm 2, \ldots
$$

4. Show that $f(z)=\sin (\bar{z})$ is analytic nowhere.

Solution: The function can be written as

$$
\begin{aligned}
& \sin (\bar{z})=\sin (x-i y) \\
& \sin (\bar{z})=\sin x \cosh (-y)+i \cos x \sinh (-y) \\
& \sin (\bar{z})=\sin x \cosh y-i \cos x \sinh y
\end{aligned}
$$

Letting $u=\sin x \cosh y$ and $v=-\cos x \sinh y$ and computing their first partial derivatives we get

$$
\begin{array}{ll}
u_{x}=\cos x \cosh y, & v_{y}=-\cos x \cosh y \\
u_{y}=\sin x \sinh y, & v_{x}=\sin x \sinh y
\end{array}
$$

In order for the Cauchy-Riemann equations $\left(u_{x}=v_{y}, u_{y}=-v_{x}\right)$ to be satisfied, we need

$$
\cos x \cosh y=0 \quad \text { and } \quad \sin x \sinh y=0
$$

to occur simultaneously. From the first equation we can only have $\cos x=0$ since $\cosh y>0$ for all y. Therefore,

$$
x=\frac{(2 k+1) \pi}{2}, \quad k=0, \pm 1, \pm 2, \ldots
$$

From the second equation we must have $\sinh y=0$ because $\sin x$ and $\cos x$ cannot be 0 simultaneously. Therefore, $y=0$.

Thus, since the first partial derivatives of u and v are continuous everywhere in the complex plane and the Cauchy-Riemann equations are satisfied for $z=\frac{(2 k+1) \pi}{2}$, $f^{\prime}(z)$ exists for these values of z. However, at each point there is no neighborhood throughout which $f(z)$ is analytic. Therefore, $f(z)=\sin (\bar{z})$ is analytic nowhere.
5. Evaluate the integral

$$
\int_{C} e^{z} d z
$$

where C is the contour consisting of the two straight-line segments: (1) from $z=i$ to $z=1+i$ and (2) from $z=1+i$ to $z=1-2 i$.

Solution: To evaluate the integral we integrate over each line segment and then add the results. On the first segment we have the parametrization

$$
z(t)=t+i, \quad 0 \leq t \leq 1
$$

Therefore, the integral of $f(z)$ over this segment is

$$
\begin{aligned}
\int_{C_{1}} f(z) d z & =\int_{0}^{1} f(z(t)) z^{\prime}(t) d t \\
& =\int_{0}^{1} e^{t+i}(1) d t \\
& =\left.e^{t+i}\right|_{0} ^{1} \\
& =e^{1+i}-e^{i}
\end{aligned}
$$

On the second segment we have the parametrization

$$
z(t)=1+i t, \quad-2 \leq t \leq 1
$$

Therefore, the integral of $f(z)$ over this segment is

$$
\begin{aligned}
\int_{C_{2}} f(z) d z & =\int_{1}^{-2} f(z(t)) z^{\prime}(t) d t \\
& =\int_{1}^{-2} e^{1+i t}(i) d t \\
& =\left.e^{1+i t}\right|_{1} ^{-2} \\
& =e^{1-2 i}-e^{1+i}
\end{aligned}
$$

The value of the integral is then

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{C_{1}} f(z) d z+\int_{C_{2}} f(z) d z \\
\int_{C} f(z) d z & =e^{1+i}-e^{i}+e^{1-2 i}-e^{1+i} \\
& =e^{1-2 i}-e^{i}=e(\cos 2-i \sin 2)+e(\cos 1+i \sin 1) \\
& =e[(\cos 2+\cos 1)+i(\sin 1-\sin 2)]
\end{aligned}
$$

Note: Instead of using parametrizations, we could have said that $f(z)$ is entire so it has an antiderivative $F(z)=e^{z}$ and the value of the integral is

$$
\int_{C} e^{z} d z=F(1-2 i)-F(i)=e^{1-2 i}-e^{i}
$$

which is exactly what we obtained above.
6. Evaluate the integral

$$
\int_{C}\left(z^{2}-1\right) d z
$$

where C is the semicircle $z=e^{i t},-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$ oriented counterclockwise.
Solution: The value of the integral is

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{a}^{b} f(z(t)) z^{\prime}(t) d t \\
\int_{C}\left(z^{2}-1\right) d z & =\int_{-\pi / 2}^{\pi / 2}\left(e^{2 i t}-1\right) i e^{i t} d t \\
& =i \int_{-\pi / 2}^{\pi / 2}\left(e^{3 i t}-e^{i t}\right) d t \\
& =i\left[\frac{1}{3 i} e^{3 i t}-\frac{1}{i} e^{i t}\right]_{-\pi / 2}^{\pi / 2} \\
& =\left(\frac{1}{3} e^{i(3 \pi / 2)}-e^{i(\pi / 2)}\right)-\left(\frac{1}{3} e^{i(-3 \pi / 2)}-e^{i(-\pi / 2)}\right) \\
& =-\frac{1}{3} i-i-\frac{1}{3} i-i \\
& =-\frac{8}{3} i
\end{aligned}
$$

Note: Instead of using the parametrization, we could have said that $f(z)$ is entire so it has an antiderivative $F(z)=\frac{1}{3} z^{3}-z$ and the value of the integral is

$$
\int_{C}\left(z^{2}-1\right) d z=F(i)-F(-i)=\left(\frac{1}{3} i^{3}-i\right)-\left(\frac{1}{3}(-i)^{3}-(-i)\right)=-\frac{1}{3} i-i-\frac{1}{3} i-i=-\frac{8}{3} i
$$

which is exactly what we obtained above.
7. Show that

$$
\left|\int_{C} \frac{2 z+1}{z^{2}-4} d z\right| \leq \pi
$$

where C is the upper half of the circle $|z|=1$ oriented counterclockwise. Justify your answer.

Solution: The length of the contour is $L=\pi$. Now we must find an upper bound on $|f(z)|$. Using the triangle inequality $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$ on the numerator we have

$$
|2 z+1| \leq 2|z|+1=2+1=3
$$

Using the triangle inequality $\left|z_{1}-z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$ on the denominator we have

$$
\left|z^{2}-4\right| \geq\left||z|^{2}-4\right|=|1-4|=3
$$

Thus, the modulus of $f(z)$ satisfies the inequality

$$
|f(z)|=\left|\frac{2 z+1}{z^{2}-4}\right| \leq \frac{3}{3}=1
$$

Choosing $M=1$ and using the formula for the $M L$-Bound we have

$$
\left|\int_{C} \frac{2 z+1}{z^{2}-4} d z\right| \leq M L=\pi
$$

8. Find an upper bound on

$$
\left|\int_{C} \frac{d z}{z^{2}+1}\right|
$$

where C is the circle $|z-i|=1$ oriented counterclockwise. Justify your answer.
Solution: The length of the contour is $L=2 \pi$. To find an upper bound on $|f(z)|$ we'll factor $z^{2}+1$ and take the modulus to get

$$
\left|\frac{1}{z^{2}+1}\right|=\frac{1}{|z-i||z+i|}=\frac{1}{1 \cdot|(z-i)+2 i|}=\frac{1}{|(z-i)+2 i|}
$$

Now we use the triangle inequality $\left|z_{1}+z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$ on the denominator to get

$$
|(z-i)+2 i| \geq \| z-i|-|2 i||=|1-2|=1
$$

Thus, we have

$$
\left|\frac{1}{z^{2}+1}\right| \leq \frac{1}{1}=1
$$

Choosing $M=1$ and using the $M L$-Bound formula we have

$$
\left|\int_{C} \frac{d z}{z^{2}+1}\right| \leq M L=2 \pi
$$

