1. Show that

$$
\int_{C} f(z) d z=0
$$

where $C$ is the circle $|z|=2$ oriented clockwise for each function below:
(a) $f(z)=z e^{-z}$
(b) $f(z)=\frac{1}{z^{2}+9}$

## Solution:

(a) The function $f(z)=z e^{-z}$ is entire and $C$ is a simple closed contour. By the Cauchy-Goursat Theorem, the value of the integral is 0 .
(b) The function $f(z)=\frac{1}{z^{2}+9}$ has singular points at $x=3 i$ and $x=-3 i$. Each of these points lies outside of $C$. Therefore, $f(z)$ is analytic everywhere on and inside $C$ so, by the Cauchy-Goursat Theorem, the value of the integral is 0 .
2. If $C$ is the unit circle $|z|=1$ oriented clockwise, then is

$$
\int_{C} \log (z+3) d z=0 ?
$$

Why or why not? Recall that $\log z$ is the principal logarithm where $|z|>0$ and $-\pi<\arg z<\pi$.

Solution: The function $\log (z+3)$ has singular points at all points on the branch cut which starts at $z=-3$ and extends along the negative real axis. These points lie outside of the unit circle so, by the CauchyGoursat Theorem, the value of the integral is 0 .
3. Evaluate

$$
\int_{C} \frac{d z}{z^{2}-1}
$$

where $C$ is the circle $|z|=2$ oriented counterclockwise.
Solution: The function $\frac{1}{z^{2}-1}=\frac{1}{(z+1)(z-1)}$ has singularities at $z=-1,1$ and both points lie inside the contour $C$. We can evaluate the integral in a few different ways. One way is to start with a partial fraction decomposition of the function:

$$
\frac{1}{(z+1)(z-1)}=\frac{-\frac{1}{2}}{z+1}+\frac{\frac{1}{2}}{z-1}
$$

Then we have

$$
\int_{C} \frac{d z}{z^{2}-1}=-\frac{1}{2} \int_{C} \frac{d z}{z+1}+\frac{1}{2} \int_{C} \frac{d z}{z-1}
$$

Now we can evaluate each integral using the Cauchy Integral Formula as $C$ is a simple closed contour:

$$
\int_{C} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right)
$$

In the first integral, we have $f(z)=1$, which is analytic on and inside $C$, and $z_{0}=-1$ so

$$
\int_{C} \frac{d z}{z+1}=2 \pi i(1)=2 \pi i
$$

In the second integral, we have $f(z)=1$, which is analytic on and inside $C$, and $z_{0}=1$ so

$$
\int_{C} \frac{d z}{z-1}=2 \pi i(1)=2 \pi i
$$

The value of the integral is then:

$$
\int_{C} \frac{d z}{z^{2}-1}=-\frac{1}{2}(2 \pi i)+\frac{1}{2}(2 \pi i)=0
$$

4. Evaluate

$$
\int_{C} \frac{\cos z}{z(z+2)} d z
$$

where $C$ is the square of side 6 centered at $z=0$ and oriented counterclockwise.

Solution: The function $\frac{\cos z}{z(z+2)}$ has singularities at $z=-2,0$ and both points lie inside the contour $C$. Again, we can evaluate the integral in a few different ways. One way is to start with a partial fraction decomposition of the function:

$$
\frac{\cos z}{z(z+2)}=\frac{1}{2} \cdot \frac{\cos z}{z}-\frac{1}{2} \cdot \frac{\cos z}{z+2}
$$

Then we have

$$
\int_{C} \frac{\cos z}{z(z+2)}=\frac{1}{2} \int_{C} \frac{\cos z}{z} d z-\frac{1}{2} \int_{C} \frac{\cos z}{z+2} d z
$$

Now we can evaluate each integral using the Cauchy Integral Formula as $C$ is a simple closed contour. In the first integral, we have $f(z)=\cos z$, which is analytic on and inside $C$, and $z_{0}=0$ so

$$
\int_{C} \frac{\cos z}{z} d z=2 \pi i \cos 0=2 \pi i
$$

In the second integral, we have $f(z)=\cos z$, which is analytic on and inside $C$, and $z_{0}=-2$ so

$$
\int_{C} \frac{\cos z}{z+2} d z=2 \pi i \cos (-2)=2 \pi i \cos 2
$$

The value of the integral is then:

$$
\int_{C} \frac{\cos z}{z(z+2)} d z=\frac{1}{2}(2 \pi i)-\frac{1}{2}(2 \pi i \cos 2)=\pi i(1-\cos 2)
$$

5. Evaluate

$$
\int_{C} \frac{e^{z}}{(z-\pi)^{3}} d z
$$

where $C$ is the square of side 8 centered at $z=0$ oriented counterclockwise.
Solution: First, we recognize that $z=\pi$ is a singular point of the integrand and lies inside the simple closed contour $C$. Now let $f(z)=e^{z}$ which is analytic on and inside $C$. We can then use the extended Cauchy Integral Formula:

$$
\int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z=\frac{2 \pi i}{n!} f^{(n)}\left(z_{0}\right)
$$

where $n=2$ and $z_{0}=\pi$. The value of the integral is then:

$$
\int_{C} \frac{e^{z}}{(z-\pi)^{3}} d z=\left.\frac{2 \pi i}{2!} \frac{d^{2}}{d z^{2}} e^{z}\right|_{z=\pi}=\pi i e^{\pi}
$$

6. Evaluate

$$
\int_{C} \frac{2 z+1}{z^{4}-2 z^{2}+1} d z
$$

where $C$ is the circle $|z|=10$ oriented clockwise.
Solution: First, we'll factor the integrand into:

$$
\frac{2 z+1}{z^{4}-2 z^{2}+1}=\frac{2 z+1}{(z-1)^{2}(z+1)^{2}}
$$

The singular points of the function are $z=1,-1$. Instead of performing the partial fraction decomposition, we will deform $C$ into two simple closed contours oriented counterclockwise, each of which encloses a singular point. This is possible because the function is analytic on $C$, the new contours, and everywhere in between (the region in gray). Let $C_{1}$ be the contour enclosing $z=1$ and $C_{2}$ be the contour enclosing
 $z=-1$. Then

$$
\int_{C} \frac{2 z+1}{z^{4}-2 z^{2}+1} d z=\int_{C_{1}} \frac{\frac{2 z+1}{(z+1)^{2}}}{(z-1)^{2}} d z+\int_{C_{2}} \frac{\frac{2 z+1}{(z+1)^{2}}}{(z+1)^{2}} d z
$$

In the first integral, we have $f(z)=\frac{2 z+1}{(z+1)^{2}}$ which is analytic everywhere on and inside $C_{1}, z_{0}=1$, and $n=1$. Using the extended Cauchy Integral Formula we have:

$$
\int_{C_{1}} \frac{\frac{2 z+1}{(z+1)^{2}}}{(z-1)^{2}} d z=\left.\frac{2 \pi i}{1!} \frac{d}{d z}\left(\frac{2 z+1}{(z+1)^{2}}\right)\right|_{z=1}=2 \pi i\left(-\frac{1}{4}\right)=-\frac{\pi i}{2}
$$

In the second integral, we have $f(z)=\frac{2 z+1}{(z-1)^{2}}$ which is analytic everywhere on and inside $C_{2}, z_{0}=-1$, and $n=1$. Using the extended Cauchy Integral Formula we have:

$$
\int_{C_{2}} \frac{\frac{2 z+1}{(z-1)^{2}}}{(z+1)^{2}} d z=\left.\frac{2 \pi i}{1!} \frac{d}{d z}\left(\frac{2 z+1}{(z-1)^{2}}\right)\right|_{z=-1}=2 \pi i\left(\frac{1}{4}\right)=\frac{\pi i}{2}
$$

Thus, the value of the integral is

$$
\int_{C} \frac{2 z+1}{z^{4}-2 z^{2}+1} d z=-\frac{\pi i}{2}+\frac{\pi i}{2}=0
$$

