MATH 417
Instructor: D. Cabrera

Homework 6
Due July 21

1. Find the radius of convergence for each power series below.

(a) » n’(z—3)"
(b) > e"(z+0)"

Solution:

(a) Using the Ratio Test we have
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The series converges when L = |z — 3| < 1. Therefore, the radius of convergence

is 1.

(b) Using the Ratio Test we have
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The series converges when L = e|z+i| < 1 = |z +1i| < —. Therefore, the radius
e
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of convergence is —.
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2. What is the radius of convergence of the Taylor Series of f(z) = ————— about

22 —324+2
z=07 about z = 377
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2—-324+2 (2-1)(z—2)
z = 2. Therefore, since f(z) is analytic at z = 0, it has a Taylor Series representation
for all z satisfying |z| < R where R is the distance between z = 0 and the nearest
singular point which is z = 1. Therefore, R = |1 — 0| = 1.

Solution: The singular points of f(z) = are z = 1 and

Since f(z) is analytic at z = 34, it has a Taylor Series representation for all z satisfying
|z — 3i] < R where R is the distance between z = 3i and the nearest singular point
which is z = 1. Therefore, R = |1 — 3i| = v/10.

Region of convergence about z = 0. Region of convergence about z = 3.
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3. Find the Taylor Series of f(z) = ﬁ about z = 0 and state the region of validity.
2

Write your answer in summation form.

Solution: The singular points of f(z) are z =i and z = —i. Since f(z) is analytic at
z = 0, it has a Taylor Series representation for all z satisfying |z| < R where R is the
distance between z = 0 and the closest singular point. Both singular points are at a
distance of 1 from the origin. Therefore, the region of validity is |z| < 1.

We are looking for a series representation in the form

F(2) = et =cot izt e’ + -

n=0
To get the Taylor Series we will write f(z) as
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and then use the Maclaurin Series for

=1—z+22—23+--.

and replace z with

about z = 0 in the region 1 < |z| < co. Write

+ z
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4. Find the Laurent Series of f(z) = ©
142

your answer in summation form.

Solution: We are looking for a series representation in the form
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To obtain this series we will rewrite f(z) as
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and replace z with



5. Determine all regions for which f(z) has a Taylor Series expansion about z = 2. Then
determine all regions for which f(z) has a Laurent Series expansion about z = 2.

DO NOT FIND THE SERIES EXPANSIONS!
(a) f(z) =¢

Solution:

(a) The function is entire so it has a Taylor Series expansion that is valid for |z —2| <
0.
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(b) The function has singular points at z = ¢ and z = —i. Since f(z) is analytic at
z = 2 it has a Taylor Series expansion for all z satisfying |z — 2| < R where R is
the distance between z = 2 and the nearest singular point. Both singular points
are at a distance of R = /5 from z = 2. Therefore, f(z) has a Taylor Series
expansion in the region |z — 2| < /5 and a Laurent Series expansion in the region
V5B < |z — 2] < 0.
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(c¢) The function has singular points at z = 0, z = —1, and z = —2i. Since f(z) is
analytic at z = 2 it has a Taylor Series expansion for all z satisfying |z — 2| < R
where R is the distance between z = 2 and the nearest singular point which is
z = 0. The distance between these points is R = 2 so f(z) has a Taylor Series
expansion in the region |z — 2| < 2.

The next closest singular point is z = —2¢. The distance between z = 2 and
z = —2iis R = | —2i—2| = 2v/2. Therefore, f(2) has a Laurent Series expansion
in the region 2 < |z — 2| < 2v/2.

The distance between z = 2 and the last singular point z = —1is R = |—-1-2| = 3.
Therefore, f(z) has another Laurent Series expansion in the region 2v/2 < |z—2| <
3.

Finally, f(z) has a third Laurent Series expansion in the region 3 < |z — 2| < occ.
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about z = 2, we would perform a Partial Fraction Decomposition of f(z) to get

If we were interested in finding the series expansions for f(z) =

1 C1 Co C3

f(z):z(z—l—l)(z—l—Zi) =;+z—|—1+z—|—2i

where ¢q, ¢o, and c3 are complex numbers. Then, on each interval we would write
either a Taylor or Laurent Series for each function and it would go as follows:



6. Find the Laurent Series of f(z) =

C1 Co C3
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1 about z = —1 in the region 1 < |z + 1] < 3.
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It is not necessary to write your answer in summation form. However, you should write
out sufficiently many terms so that the pattern is clear.

Solution: First, we use the Method of Partial Fractions to rewrite the function as

1
The function fi(z) = Py has a singular point at z = 2. Since fi(z) is analytic at
S

z = —1 and the distance between z = —1 and z = 2 is 3, fi(z) has a Taylor Series
expansion in the region |z + 1| < 3. Since we are looking for a series expansion for f(z)
in the annulus 1 < |z+ 1| < 3, we will write the Taylor Series for f;(z) around z = —1.
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The function fy(z) = P has a singular point at z = —2. Since fy(z) is analytic at
z
z = —1 and the distance between z = —1 and z = —1 is 1, f»(z) has a Taylor Series

expansion in the region |z + 1| < 1. However, we are interested in the series expansion
of f(z) in the annulus 1 < |z + 1| < 3. Therefore, we want to write the Laurent Series
of fo(z) around z = —1.
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Putting the series expansions for fi(z) and f(z) back into the formula for f(z) we get
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