1. Find all singular points of the given function. For each isolated singular point, classify the point as being a removable singularity, a pole of order N (specify N), or an essential singularity.
(a) $f(z)=\frac{1}{z(z-1)}$
(b) $f(z)=\frac{e^{z}-1}{z^{3}}$
(c) $f(z)=\sin \left(\frac{1}{z}\right)$

Solution:

(a) The isolated singular points of $f(z)=\frac{1}{z(z-1)}$ are $z=0$ and $z=1$. The Laurent Series of $f(z)$ about $z=0$ in the region $0<|z|<1$ is

$$
\begin{aligned}
& f(z)=-\frac{1}{z} \cdot \frac{1}{1-z} \\
& f(z)=-\frac{1}{z}\left(1+z+z^{2}+\cdots\right) \\
& f(z)=-\frac{1}{z}-1-\cdots
\end{aligned}
$$

Since the series begins at the $\frac{c_{-1}}{z}$ term, the singular point $z=0$ is a pole of order 1 or a simple pole.
The Laurent Series of $f(z)$ about $z=1$ in the region $0<|z-1|<1$ is

$$
\begin{aligned}
& f(z)=\frac{1}{z-1} \cdot \frac{1}{1+(z-1)} \\
& f(z)=\frac{1}{z-1}\left[1-(z-1)+(z-1)^{2}+\cdots\right] \\
& f(z)=\frac{1}{z-1}-1+\cdots
\end{aligned}
$$

Since the series begins at the $\frac{c_{-1}}{z-1}$ term, the singular point $z=1$ is a simple pole.
(b) The only isolated singular point of $f(z)=\frac{e^{z}-1}{z^{3}}$ is $z=0$. The Laurent Series of $f(z)$ about $z=0$ is

$$
\begin{aligned}
& f(z)=\frac{1}{z^{3}}\left(e^{z}-1\right) \\
& f(z)=\frac{1}{z^{3}}\left(1+z+\frac{z^{2}}{2!}+\cdots-1\right) \\
& f(z)=\frac{1}{z^{2}}+\frac{1}{2!z}+\cdots
\end{aligned}
$$

Since the series begins at the $\frac{c-2}{z^{2}}$ term, the singular point $z=0$ is a pole of order 2.
(c) The only isolated singular point of $f(z)=\sin \left(\frac{1}{z}\right)$ is $z=0$. The Laurent Series of $f(z)$ about $z=0$ in the region $0<|z|<\infty$ is

$$
\begin{aligned}
& f(z)=\sin \left(\frac{1}{z}\right) \\
& f(z)=\frac{1}{z}-\frac{\left(\frac{1}{z}\right)^{2}}{3!}+\frac{\left(\frac{1}{z}\right)^{5}}{5!}-\cdots \\
& f(z)=\cdots+\frac{\frac{1}{5!}}{z^{5}}-\frac{\frac{1}{3!}}{z^{3}}+\frac{1}{z}
\end{aligned}
$$

There are infinitely many terms of the form $\frac{c_{-n}}{z^{n}}$ where n is positive. Therefore, $z=0$ is an essential singularity.
2. Find all residues of $f(z)=\frac{1}{(z+4)(z-1)^{3}}$.

Solution: The singular points of $f(z)$ are $z=-4$ and $z=1$. If we let $\phi_{1}(z)=\frac{1}{(z-1)^{3}}$, then $\phi_{1}(z)$ is analytic and nonzero at $z=-4$ and

$$
f(z)=\frac{\phi_{1}(z)}{(z+4)^{1}}
$$

Therefore, $z=-4$ is a simple pole and

$$
\operatorname{Res}_{z=-4} f(z)=\phi_{1}(-4)=\left.\frac{1}{(z-1)^{3}}\right|_{z=-4}=-\frac{1}{125}
$$

If we let $\phi_{2}(z)=\frac{1}{z+4}$, then $\phi_{2}(z)$ is analytic and nonzero at $z=1$ and

$$
f(z)=\frac{\phi_{2}(z)}{(z-1)^{3}}
$$

Therefore, $z=1$ is a pole of order 3 and

$$
\operatorname{Res}_{z=1} f(z)=\frac{1}{2!} \phi_{2}^{\prime \prime}(1)=\left.\frac{1}{2!} \frac{2}{(z+4)^{3}}\right|_{z=1}=\frac{1}{125}
$$

3. Evaluate $\int_{C} \frac{(z+1)^{2}}{z^{2}(z-1)} d z$ where C is the circle $|z|=3$ oriented counterclockwise.

Solution: The singular points of $f(z)=\frac{(z+1)^{2}}{z^{2}(z-1)}$ are $z=0$ and $z=1$. Both points are interior to the circle $|z|=3$ so the value of the integral is

$$
\int_{C} \frac{(z+1)^{2}}{z^{2}(z-1)} d z=2 \pi i\left[\operatorname{Res}_{z=0} f(z)+\operatorname{Res}_{z=1} f(z)\right]
$$

(i) If we let $\phi_{1}(z)=\frac{(z+1)^{2}}{z-1}$, then $\phi_{1}(z)$ is analytic and nonzero at $z=0$ and

$$
f(z)=\frac{\phi_{1}(z)}{z^{2}}
$$

Therefore, $z=0$ is a pole of order 2 and

$$
\operatorname{Res}_{z=0} f(z)=\frac{1}{1!} \phi_{1}^{\prime}(0)=\left.\frac{z^{2}-2 z-3}{(z-1)^{2}}\right|_{z=0}=-3
$$

(ii) If we let $\phi_{2}(z)=\frac{(z+1)^{2}}{z^{2}}$, then $\phi_{2}(z)$ is analytic and nonzero at $z=1$ and

$$
f(z)=\frac{\phi_{2}(z)}{(z-1)^{1}}
$$

Therefore, $z=1$ is a simple pole and

$$
\operatorname{Res}_{z=1} f(z)=\phi_{2}(1)=\frac{(1+1)^{2}}{1^{2}}=4
$$

The value of the integral is then

$$
\int_{C} \frac{(z+1)^{2}}{z^{2}(z-1)} d z=2 \pi i\left[\operatorname{Res}_{z=0} f(z)+\operatorname{Res}_{z=1} f(z)\right]=2 \pi i(4-3)=2 \pi i
$$

4. Evaluate $\int_{C} \frac{e^{z}}{\sin z} d z$ where C is the circle $|z-\pi|=1$ oriented counterclockwise.

Solution: The function $f(z)=\frac{e^{z}}{\sin z}$ has singularities at $z=k \pi$ where $k=0, \pm 1, \pm 2, \ldots$. The only singular point that is in the interior of the circle $|z-\pi|=1$ is $z=\pi$. Therefore, the value of the integral is

$$
\int_{C} \frac{e^{z}}{\sin z} d z=2 \pi i \operatorname{Res}_{z=\pi} f(z)
$$

To find the residue at $z=\pi$ we will let $p(z)=e^{z}$ and $q(z)=\sin z$. We recognize that both functions are analytic at $z=\pi$ and that

$$
\begin{aligned}
& \text { (1) } p(\pi)=e^{\pi} \neq 0 \\
& \text { (2) } q(\pi)=0 \\
& \text { (3) } q^{\prime}(\pi)=\cos \pi=-1 \neq 0
\end{aligned}
$$

Therefore, $z=\pi$ is a simple pole and

$$
\operatorname{Res}_{z=\pi} f(z)=\frac{p(\pi)}{q^{\prime}(\pi)}=-e^{\pi}
$$

The value of the integral is

$$
\int_{C} \frac{e^{z}}{\sin z} d z=2 \pi i \operatorname{Res}_{z=\pi} f(z)=-2 \pi i e^{\pi}
$$

5. Show that $\int_{0}^{\infty} \frac{d x}{x^{4}+1}=\frac{\pi}{2 \sqrt{2}}$.

Solution: Let's consider the contour integral

$$
\int_{C} \frac{d z}{z^{4}+1}
$$

where C is the contour shown below, consisting of the path along the real axis from $z=0$ to $z=R$, the path along the quarter circle from $z=R$ to $z=i R$, and the path along the imaginary axis from $z=i R$ to $z=0$. Then we have

$$
\int_{C} \frac{d z}{z^{4}+1}=\int_{C_{1}} \frac{d z}{z^{4}+1}+\int_{C_{R}} \frac{d z}{z^{4}+1}+\int_{C_{2}} \frac{d z}{z^{4}+1}
$$

(i) The integral over the simple closed contour C can be evaluated using residues. The function $f(z)=\frac{1}{z^{4}+1}$ has four singular points but only $z_{1}=e^{\pi i / 4}=\frac{\sqrt{2}}{2}(1+i)$ is interior to C so the value of the integral is

$$
\int_{C} \frac{d z}{z^{4}+1}=2 \pi i \operatorname{Res}_{z=z_{1}} f(z)
$$

To find the residue, we'll let $p(z)=1$ and $q(z)=z^{4}+1$. Notice that both functions are analytic at $z=z_{1}, p\left(z_{1}\right) \neq 0, q\left(z_{1}\right)=0$, and $q^{\prime}\left(z_{1}\right) \neq 0$. So we know that z_{1} is a simple pole of $f(z)$ and that

$$
\operatorname{Res}_{z=z_{1}} f(z)=\frac{p\left(z_{1}\right)}{q^{\prime}\left(z_{1}\right)}=\frac{1}{4 z_{1}^{3}}=\frac{1}{4 \sqrt{2}}(-1-i)
$$

Therefore, the value of the integral over C is

$$
\int_{C} \frac{d z}{z^{4}+1}=2 \pi i\left(\frac{1}{4 \sqrt{2}}(-1-i)\right)=\frac{\pi}{2 \sqrt{2}}-i \frac{\pi}{2 \sqrt{2}}
$$

(ii) The integral along C_{1} is

$$
\int_{C_{1}} \frac{d z}{z^{4}+1}=\int_{0}^{R} \frac{d x}{x^{4}+1}
$$

(iii) The integral along C_{2} is

$$
\int_{C_{2}} \frac{d z}{z^{4}+1}=\int_{R}^{0} \frac{i d y}{(i y)^{4}+1}=-i \int_{0}^{R} \frac{d y}{y^{4}+1}
$$

(iv) Finally, we use the $M L$-Bound formula to show that the integral over C_{R} goes to 0 . We have

$$
\left|\int_{C_{R}} \frac{d z}{z^{4}+1}\right| \leq M L=\frac{1}{R^{4}-1} \cdot \frac{\pi R}{2} \rightarrow 0 \quad \text { as } R \rightarrow \infty
$$

Therefore, as $R \rightarrow \infty$ we have

$$
\begin{aligned}
\int_{C} \frac{d z}{z^{4}+1} & =\int_{C_{1}} \frac{d z}{z^{4}+1}+\int_{C_{R}} \frac{d z}{z^{4}+1}+\int_{C_{2}} \frac{d z}{z^{4}+1} \\
\frac{\pi}{2 \sqrt{2}}-i \frac{\pi}{2 \sqrt{2}} & =\int_{0}^{\infty} \frac{d x}{x^{4}+1}+0-i \int_{0}^{\infty} \frac{d y}{y^{4}+1}
\end{aligned}
$$

Taking the real part of both sides of the above equation we find that

$$
\int_{0}^{\infty} \frac{d x}{x^{4}+1}=\frac{\pi}{2 \sqrt{2}}
$$

Taking the imaginary part of both sides we find that

$$
\int_{0}^{\infty} \frac{d y}{y^{4}+1}=\frac{\pi}{2 \sqrt{2}}
$$

which is expected since the integrals are exactly the same.
6. Show that $\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+4\right)^{3}}=\frac{3 \pi}{256}$

Solution: Let's consider the contour integral

$$
\int_{C} \frac{d z}{\left(z^{2}+4\right)^{3}}
$$

where C is the contour shown below, consisting of the path along the real axis from $z=-R$ to $z=R$ and the path along the semicircle circle from $z=R$ to $z=-R$. Then we have

$$
\int_{C} \frac{d z}{\left(z^{2}+4\right)^{3}}=\int_{C_{1}} \frac{d z}{\left(z^{2}+4\right)^{3}}+\int_{C_{R}} \frac{d z}{\left(z^{2}+4\right)^{3}}
$$

(i) The integral over the simple closed contour C can be evaluated using residues. The function $f(z)=\frac{1}{\left(z^{2}+4\right)^{3}}$ has two singular points but only $z=2 i$ is interior to C so the value of the integral is

$$
\int_{C} \frac{d z}{\left(z^{2}+4\right)^{3}}=2 \pi i \operatorname{Res}_{z=2 i} f(z)
$$

To find the residue, we'll let $\phi(z)=\frac{1}{(z+2 i)^{3}}$. Then $\phi(z)$ is analytic and nonzero at $z=2 i$ and

$$
f(z)=\frac{\phi(z)}{(z+2 i)^{3}}
$$

So we know that $z=2 i$ is a pole of order 3 and the residue there is

$$
\operatorname{Res}_{z=2 i} f(z)=\frac{1}{2!} \phi^{\prime \prime}(2 i)=\left.\frac{1}{2!} \frac{12}{(z+2 i)^{5}}\right|_{z=2 i}=-\frac{3 i}{512}
$$

Therefore, the value of the integral over C is

$$
\int_{C} \frac{d z}{\left(z^{2}+4\right)^{3}}=2 \pi i\left(-\frac{3 i}{512}\right)=\frac{3 \pi}{256}
$$

(ii) The integral along C_{1} is

$$
\int_{C_{1}} \frac{d z}{z^{4}+1}=\int_{-R}^{R} \frac{d x}{\left(x^{2}+4\right)^{3}}
$$

(iii) Finally, we use the $M L$-Bound formula to show that the integral over C_{R} goes to 0 . We have

$$
\left|\int_{C_{R}} \frac{d z}{\left(z^{2}+4\right)^{3}}\right| \leq \frac{1}{\left(R^{2}-4\right)^{3}} \cdot \pi R \rightarrow 0 \text { as } R \rightarrow \infty
$$

Therefore, as $R \rightarrow \infty$ we have

$$
\begin{aligned}
\int_{C} \frac{d z}{\left(z^{2}+4\right)^{3}} & =\int_{C_{1}} \frac{d z}{\left(z^{2}+4\right)^{3}}+\int_{C_{R}} \frac{d z}{\left(z^{2}+4\right)^{3}} \\
\frac{3 \pi}{256} & =\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{d x}{\left(x^{2}+4\right)^{3}}+0 \\
\frac{3 \pi}{256} & =\text { P.V. } \int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+4\right)^{3}}
\end{aligned}
$$

We note that the Principal Value exists and that $f(x)=\frac{1}{\left(x^{2}+4\right)^{3}}$ is even so the Principal Value is the actual value of the integral.

$$
\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+4\right)^{3}}=\frac{3 \pi}{256}
$$

