1. Find all singular points of the given function. For each isolated singular point, classify the point as being a removable singularity, a pole of order N (specify N), or an essential singularity.

(a)
$$f(z) = \frac{1}{z(z-1)}$$

(b)
$$f(z) = \frac{e^z - 1}{z^3}$$

(c)
$$f(z) = \sin\left(\frac{1}{z}\right)$$

Solution:

(a) The isolated singular points of $f(z) = \frac{1}{z(z-1)}$ are z = 0 and z = 1. The Laurent Series of f(z) about z = 0 in the region 0 < |z| < 1 is

$$f(z) = -\frac{1}{z} \cdot \frac{1}{1-z}$$

$$f(z) = -\frac{1}{z}(1+z+z^{2}+\cdots)$$

$$f(z) = -\frac{1}{z}-1-\cdots$$

Since the series begins at the $\frac{c_{-1}}{z}$ term, the singular point z = 0 is a pole of order 1 or a simple pole.

The Laurent Series of f(z) about z = 1 in the region 0 < |z - 1| < 1 is

$$f(z) = \frac{1}{z-1} \cdot \frac{1}{1+(z-1)}$$

$$f(z) = \frac{1}{z-1} \left[1 - (z-1) + (z-1)^2 + \cdots \right]$$

$$f(z) = \frac{1}{z-1} - 1 + \cdots$$

Since the series begins at the $\frac{c_{-1}}{z-1}$ term, the singular point z = 1 is a simple pole.

(b) The only isolated singular point of $f(z) = \frac{e^z - 1}{z^3}$ is z = 0. The Laurent Series of f(z) about z = 0 is

$$f(z) = \frac{1}{z^3} (e^z - 1)$$

$$f(z) = \frac{1}{z^3} \left(1 + z + \frac{z^2}{2!} + \dots - 1 \right)$$

$$f(z) = \frac{1}{z^2} + \frac{1}{2!z} + \dots$$

Since the series begins at the $\frac{c_{-2}}{z^2}$ term, the singular point z = 0 is a pole of order 2.

(c) The only isolated singular point of $f(z) = \sin\left(\frac{1}{z}\right)$ is z = 0. The Laurent Series of f(z) about z = 0 in the region $0 < |z| < \infty$ is

$$f(z) = \sin\left(\frac{1}{z}\right)$$

$$f(z) = \frac{1}{z} - \frac{\left(\frac{1}{z}\right)^2}{3!} + \frac{\left(\frac{1}{z}\right)^5}{5!} - \cdots$$

$$f(z) = \cdots + \frac{\frac{1}{5!}}{z^5} - \frac{\frac{1}{3!}}{z^3} + \frac{1}{z}$$

There are infinitely many terms of the form $\frac{c_{-n}}{z^n}$ where *n* is positive. Therefore, z = 0 is an essential singularity.

2. Find all residues of $f(z) = \frac{1}{(z+4)(z-1)^3}$.

Solution: The singular points of f(z) are z = -4 and z = 1. If we let $\phi_1(z) = \frac{1}{(z-1)^3}$, then $\phi_1(z)$ is analytic and nonzero at z = -4 and

$$f(z) = \frac{\phi_1(z)}{(z+4)^1}$$

Therefore, z = -4 is a simple pole and

Res_{z=-4}
$$f(z) = \phi_1(-4) = \frac{1}{(z-1)^3} \Big|_{z=-4} = -\frac{1}{125}$$

If we let $\phi_2(z) = \frac{1}{z+4}$, then $\phi_2(z)$ is analytic and nonzero at z = 1 and

$$f(z) = \frac{\phi_2(z)}{(z-1)^3}$$

Therefore, z = 1 is a pole of order 3 and

Res
$$f(z) = \frac{1}{2!}\phi_2''(1) = \frac{1}{2!}\frac{2}{(z+4)^3}\Big|_{z=1} = \frac{1}{125}$$

3. Evaluate $\int_C \frac{(z+1)^2}{z^2(z-1)} dz$ where C is the circle |z| = 3 oriented counterclockwise.

Solution: The singular points of $f(z) = \frac{(z+1)^2}{z^2(z-1)}$ are z = 0 and z = 1. Both points are interior to the circle |z| = 3 so the value of the integral is

$$\int_C \frac{(z+1)^2}{z^2(z-1)} dz = 2\pi i \left[\operatorname{Res}_{z=0} f(z) + \operatorname{Res}_{z=1} f(z) \right]$$

(i) If we let $\phi_1(z) = \frac{(z+1)^2}{z-1}$, then $\phi_1(z)$ is analytic and nonzero at z = 0 and

$$f(z) = \frac{\phi_1(z)}{z^2}$$

Therefore, z = 0 is a pole of order 2 and

$$\operatorname{Res}_{z=0} f(z) = \frac{1}{1!} \phi_1'(0) = \left. \frac{z^2 - 2z - 3}{(z-1)^2} \right|_{z=0} = -3$$

(ii) If we let $\phi_2(z) = \frac{(z+1)^2}{z^2}$, then $\phi_2(z)$ is analytic and nonzero at z = 1 and

$$f(z) = \frac{\phi_2(z)}{(z-1)^1}$$

Therefore, z = 1 is a simple pole and

Res_{z=1}
$$f(z) = \phi_2(1) = \frac{(1+1)^2}{1^2} = 4$$

The value of the integral is then

$$\int_C \frac{(z+1)^2}{z^2(z-1)} dz = 2\pi i \left[\operatorname{Res}_{z=0} f(z) + \operatorname{Res}_{z=1} f(z) \right] = 2\pi i (4-3) = 2\pi i$$

4. Evaluate $\int_C \frac{e^z}{\sin z} dz$ where C is the circle $|z - \pi| = 1$ oriented counterclockwise.

Solution: The function $f(z) = \frac{e^z}{\sin z}$ has singularities at $z = k\pi$ where $k = 0, \pm 1, \pm 2, \ldots$. The only singular point that is in the interior of the circle $|z - \pi| = 1$ is $z = \pi$. Therefore, the value of the integral is

$$\int_C \frac{e^z}{\sin z} \, dz = 2\pi i \operatorname{Res}_{z=\pi} f(z)$$

To find the residue at $z = \pi$ we will let $p(z) = e^z$ and $q(z) = \sin z$. We recognize that both functions are analytic at $z = \pi$ and that

> (1) $p(\pi) = e^{\pi} \neq 0$ (2) $q(\pi) = 0$ (3) $q'(\pi) = \cos \pi = -1 \neq 0$

Therefore, $z = \pi$ is a simple pole and

$$\operatorname{Res}_{z=\pi} f(z) = \frac{p(\pi)}{q'(\pi)} = -e^{\pi}$$

The value of the integral is

$$\int_C \frac{e^z}{\sin z} \, dz = 2\pi i \operatorname{Res}_{z=\pi} f(z) = -2\pi i e^{\pi}$$

5. Show that $\int_0^\infty \frac{dx}{x^4 + 1} = \frac{\pi}{2\sqrt{2}}.$

Solution: Let's consider the contour integral

$$\int_C \frac{dz}{z^4 + 1}$$

where C is the contour shown below, consisting of the path along the real axis from z = 0 to z = R, the path along the quarter circle from z = R to z = iR, and the path along the imaginary axis from z = iR to z = 0. Then we have

$$\int_{C} \frac{dz}{z^{4} + 1} = \int_{C_{1}} \frac{dz}{z^{4} + 1} + \int_{C_{R}} \frac{dz}{z^{4} + 1} + \int_{C_{2}} \frac{dz}{z^{4} + 1}$$

(i) The integral over the simple closed contour C can be evaluated using residues. The function $f(z) = \frac{1}{z^4+1}$ has four singular points but only $z_1 = e^{\pi i/4} = \frac{\sqrt{2}}{2}(1+i)$ is interior to C so the value of the integral is

$$\int_C \frac{dz}{z^4 + 1} = 2\pi i \operatorname{Res}_{z=z_1} f(z)$$

To find the residue, we'll let p(z) = 1 and $q(z) = z^4 + 1$. Notice that both functions are analytic at $z = z_1$, $p(z_1) \neq 0$, $q(z_1) = 0$, and $q'(z_1) \neq 0$. So we know that z_1 is a simple pole of f(z) and that

Res
$$_{z=z_1} f(z) = \frac{p(z_1)}{q'(z_1)} = \frac{1}{4z_1^3} = \frac{1}{4\sqrt{2}}(-1-i)$$

Therefore, the value of the integral over C is

$$\int_C \frac{dz}{z^4 + 1} = 2\pi i \left(\frac{1}{4\sqrt{2}}(-1 - i)\right) = \frac{\pi}{2\sqrt{2}} - i\frac{\pi}{2\sqrt{2}}$$

(ii) The integral along C_1 is

$$\int_{C_1} \frac{dz}{z^4 + 1} = \int_0^R \frac{dx}{x^4 + 1}$$

(iii) The integral along C_2 is

$$\int_{C_2} \frac{dz}{z^4 + 1} = \int_R^0 \frac{i \, dy}{(iy)^4 + 1} = -i \int_0^R \frac{dy}{y^4 + 1}$$

(iv) Finally, we use the ML-Bound formula to show that the integral over C_R goes to 0. We have

$$\left| \int_{C_R} \frac{dz}{z^4 + 1} \right| \le ML = \frac{1}{R^4 - 1} \cdot \frac{\pi R}{2} \to 0 \text{ as } R \to \infty$$

Therefore, as $R \to \infty$ we have

$$\int_C \frac{dz}{z^4 + 1} = \int_{C_1} \frac{dz}{z^4 + 1} + \int_{C_R} \frac{dz}{z^4 + 1} + \int_{C_2} \frac{dz}{z^4 + 1}$$
$$\frac{\pi}{2\sqrt{2}} - i\frac{\pi}{2\sqrt{2}} = \int_0^\infty \frac{dx}{x^4 + 1} + 0 - i\int_0^\infty \frac{dy}{y^4 + 1}$$

Taking the real part of both sides of the above equation we find that

$$\int_0^\infty \frac{dx}{x^4 + 1} = \frac{\pi}{2\sqrt{2}}$$

Taking the imaginary part of both sides we find that

$$\int_0^\infty \frac{dy}{y^4 + 1} = \frac{\pi}{2\sqrt{2}}$$

which is expected since the integrals are exactly the same.

6. Show that $\int_{-\infty}^{\infty} \frac{dx}{(x^2+4)^3} = \frac{3\pi}{256}$

Solution: Let's consider the contour integral

$$\int_C \frac{dz}{(z^2+4)^3}$$

where C is the contour shown below, consisting of the path along the real axis from z = -R to z = R and the path along the semicircle circle from z = R to z = -R. Then we have

$$\int_C \frac{dz}{(z^2+4)^3} = \int_{C_1} \frac{dz}{(z^2+4)^3} + \int_{C_R} \frac{dz}{(z^2+4)^3}$$

(i) The integral over the simple closed contour C can be evaluated using residues. The function $f(z) = \frac{1}{(z^2+4)^3}$ has two singular points but only z = 2i is interior to C so the value of the integral is

$$\int_C \frac{dz}{(z^2 + 4)^3} = 2\pi i \operatorname{Res}_{z=2i} f(z)$$

To find the residue, we'll let $\phi(z) = \frac{1}{(z+2i)^3}$. Then $\phi(z)$ is analytic and nonzero at z = 2i and

$$f(z) = \frac{\phi(z)}{(z+2i)^3}$$

So we know that z = 2i is a pole of order 3 and the residue there is

$$\operatorname{Res}_{z=2i} f(z) = \frac{1}{2!} \phi''(2i) = \frac{1}{2!} \left. \frac{12}{(z+2i)^5} \right|_{z=2i} = -\frac{3i}{512}$$

Therefore, the value of the integral over C is

$$\int_C \frac{dz}{(z^2+4)^3} = 2\pi i \left(-\frac{3i}{512}\right) = \frac{3\pi}{256}$$

(ii) The integral along C_1 is

$$\int_{C_1} \frac{dz}{z^4 + 1} = \int_{-R}^{R} \frac{dx}{(x^2 + 4)^3}$$

(iii) Finally, we use the ML-Bound formula to show that the integral over C_R goes to 0. We have

$$\left| \int_{C_R} \frac{dz}{(z^2 + 4)^3} \right| \le \frac{1}{(R^2 - 4)^3} \cdot \pi R \to 0 \text{ as } R \to \infty$$

Therefore, as $R \to \infty$ we have

$$\int_{C} \frac{dz}{(z^2+4)^3} = \int_{C_1} \frac{dz}{(z^2+4)^3} + \int_{C_R} \frac{dz}{(z^2+4)^3}$$
$$\frac{3\pi}{256} = \lim_{R \to \infty} \int_{-R}^{R} \frac{dx}{(x^2+4)^3} + 0$$
$$\frac{3\pi}{256} = \text{P.V.} \int_{-\infty}^{\infty} \frac{dx}{(x^2+4)^3}$$

We note that the Principal Value exists and that $f(x) = \frac{1}{(x^2+4)^3}$ is even so the Principal Value is the actual value of the integral.

$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+4)^3} = \frac{3\pi}{256}$$