
MATH 417 Homework 8

Instructor: D. Cabrera Due August 4

1. Compute the improper integral
∫

∞

0

cos 2x

(x2 + 1)2
dx

Solution: To evaluate the integral consider the complex integral

∫

C

ei(2z)

(z2 + 1)2
dz

where C is the union of the contours C1 and CR shown below.
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The complex integral can be split into two integrals:

∫

C

ei(2z)

(z2 + 1)2
dz =

∫

C1

ei(2z)

(z2 + 1)2
dz +

∫

CR

ei(2z)

(z2 + 1)2
dz

Let’s compute each integral in turn.

(i) The function f(z) = ei(2z)

(z2+1)2
has singular points at i and −i. Only the former is

inside the contour C. Therefore, the integral over C is

∫

C

ei(2z)

(z2 + 1)2
dz = 2πi Res

z=i
f(z)

To find the residue, we note that the point i is a pole of order 2. To see this, we
define the function φ(z) as

φ(z) =
ei(2z)

(z + i)2

so that

f(z) =
φ(z)

(z − i)2
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Since φ(z) is analytic and nonzero at i, the point is a pole of order 2 and the
residue is

Res
z=i

f(z) =
1

1!
φ′(i)

=
(z + i)2(2iei(2z)) − 2(z + i)ei(2z)

(z + i)4

∣

∣

∣

∣

z=i

=
(i + i)2(2ie2i2) − 2(i + i)e2i2

(i + i)4

=
−8ie−2 − 4ie−2

16

= −3

4
e−2i

Therefore, the value of the integral over C is
∫

C

ei(2z)

(z2 + 1)2
dz = 2πi Res

z=i
f(z)

= 2πi

(

−3

4
e−2i

)

=
3π

2
e−2

(ii) The integral over C1 is
∫

C1

ei(2z)

(z2 + 1)2
dz =

∫ R

−R

ei(2x)

(x2 + 1)2
dx

=

∫ R

−R

cos 2x

(x2 + 1)2
dx + i

∫ R

−R

sin 2x

(x2 + 1)2
dx

(iii) Finally, we use the ML-Bound formula to evaluate the integral over CR. First,
we note that the length of the contour is L = πR. Then, we find an upper bound
M on |f(z)| over CR by noting that

∣

∣

∣

∣

ei(2z)

(z2 + 1)2

∣

∣

∣

∣

=
|e2i(x+iy)|
|z2 + 1|2

<
e−2y

(R2 − 1)2

≤ 1

(R2 − 1)2
= M

where we used the fact that (1) |e−2y| ≤ 1 for all z on CR since e−2y takes on its
maximum value on CR when y = 0 and (2) |z2 + 1| ≤ ||z|2 − 1| = R2 − 1 using
the Triangle Inequality. Thus, the modulus of the integral over CR is bounded as
follows:

∣

∣

∣

∣

∫

CR

ei(2z)

(z2 + 1)2

∣

∣

∣

∣

≤ πR

(R2 − 1)2
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Putting it all together and taking the limit as R → ∞ we have

lim
R→∞

∫

C

ei(2z)

(z2 + 1)2
dz = lim

R→∞

∫

C1

ei(2z)

(z2 + 1)2
dz + lim

R→∞

∫

CR

ei(2z)

(z2 + 1)2
dz

3π

2
e−2 = lim

R→∞

∫ R

−R

cos 2x

(x2 + 1)2
dx + i lim

R→∞

∫ R

−R

sin 2x

(x2 + 1)2
dx + 0

3π

2
e−2 = P.V.

∫

∞

−∞

cos 2x

(x2 + 1)2
dx + i P.V.

∫ R

−R

sin 2x

(x2 + 1)2
dx

Taking the real parts of both sides of the above equation gives us

3π

2
e−2 = P.V.

∫

∞

−∞

cos 2x

(x2 + 1)2
dx

Note that the integrand f(x) = cos 2x
(x2+1)2

is an even function so that the principal value
of the integral is the actual value. Furthermore,

∫

∞

−∞

cos 2x

(x2 + 1)2
dx = 2

∫

∞

0

cos 2x

(x2 + 1)2
dx

So our final answer is
∫

∞

0

cos 2x

(x2 + 1)2
dx =

3π

4
e−2

2. Show that
∫

∞

0

(ln x)2

x2 + 1
dx =

π3

8

Solution: To evaluate the integral consider the complex integral
∫

C

(log z)2

z2 + 1
dz

where C is the union of the contours C1, CR, C2, and Cε shown below. Note that we
take the branch cut −π

2
< θ < 3π

2
in order to avoid the contour.
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The complex integral can be split into four integrals:

∫

C

(log z)2

z2 + 1
dz =

∫

C1

(log z)2

z2 + 1
dz +

∫

CR

(log z)2

z2 + 1
dz +

∫

C2

(log z)2

z2 + 1
dz +

∫

Cε

(log z)2

z2 + 1
dz

Let’s compute each integral in turn.

(i) The function f(z) = (log z)2

z2+1
has infinitely many singular points but only z = i is

inside C. Therefore, the integral over C is
∫

C

(log z)2

z2 + 1
dz = 2πi Res

z=i
f(z)

To find the residue, we note that the point i is a simple pole. To see this, we
define the function φ(z) as

φ(z) =
(log z)2

z + i

so that

f(z) =
φ(z)

(z − i)1

Since φ(z) is analytic and nonzero at i, the point is a pole of order 1 and the
residue is

Res
z=i

f(z) = φ(i)

=
(log i)2

i + i

=
(ln 1 + i · π

2
)2

2i

=
π2

8
i

Therefore, the value of the integral over C is
∫

C

(log z)2

z2 + 1
dz = 2πi Res

z=i
f(z)

= 2πi

(

π2

8
i

)

= −π3

4

(ii) The integral over C1 is parametrized by z = rei(0) = r, ε ≤ r ≤ R so that dz = dr

and we get
∫

C1

(log z)2

z2 + 1
dz =

∫ R

ε

(ln r + i(0))2

r2 + 1
dr

=

∫ R

ε

(ln r)2

r2 + 1
dr
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(iii) We use the ML-Bound formula to evaluate the integral over CR. First, we note
that the length of the contour is L = πR. Then, we find an upper bound M on
|f(z)| over CR by noting that

∣

∣

∣

∣

(log z)2

z2 + 1

∣

∣

∣

∣

=
| ln r + iθ|2
|z2 + 1|

≤ (| ln r| + |iθ|)2

||z|2 − 1|

≤ (ln R + π)2

R2 − 1
= M

where we used the Triangle Inequality on both the numerator and denominator.
Thus, the modulus of the integral over CR is bounded as follows:

∣

∣

∣

∣

∫

CR

(log z)2

z2 + 1

∣

∣

∣

∣

≤ πR(ln R + π)2

R2 − 1

We note that the right hand side of the above inequality goes to 0 as R → ∞.

(iv) The integral over C2 is parametrized by z = reiπ = −r, ε ≤ r ≤ R so that
dz = −dr and we get

∫

C2

(log z)2

z2 + 1
dz =

∫ ε

R

(ln r + iπ)2

r2 + 1
(−dr)

=

∫ R

ε

(ln r)2 + (2π ln r)i − π2

r2 + 1
dr

=

∫ R

ε

(ln r)2

r2 + 1
− π2

∫ R

ε

dr

r2 + 1
+ i

∫ R

ε

2π ln r

r2 + 1
dr

(v) Finally, we use the ML-Bound formula to evaluate the integral over Cε. First, we
note that the length of the contour is L = πε. Then, we find an upper bound M

on |f(z)| over Cε by noting that
∣

∣

∣

∣

(log z)2

z2 + 1

∣

∣

∣

∣

=
| ln r + iθ|2
|z2 + 1|

≤ (| ln r| + |iθ|)2

||z|2 − 1|

≤ (− ln ε + π)2

1 − ε2
= M

where we used the Triangle Inequality on both the numerator and denominator.
Thus, the modulus of the integral over Cε is bounded as follows:

∣

∣

∣

∣

∫

Cε

(log z)2

z2 + 1

∣

∣

∣

∣

≤ πε(− ln ε + π)2

1 − ε2

We note that the right hand side of the above inequality goes to 0 as ε → 0+.
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Putting it all together and taking the limit as ε → 0+ and R → ∞ we get

∫

C

(log z)2

z2 + 1
dz =

∫

C1

(log z)2

z2 + 1
dz +

∫

CR

(log z)2

z2 + 1
dz +

∫

C2

(log z)2

z2 + 1
dz +

∫

Cε

(log z)2

z2 + 1
dz

−π3

4
=

∫

∞

0

(ln r)2

r2 + 1
dr + 0 +

∫

∞

0

(ln r)2

r2 + 1
− π2

∫

∞

0

dr

r2 + 1
+ i

∫

∞

0

2π ln r

r2 + 1
dr + 0

−π3

4
= 2

∫

∞

0

(ln r)2

r2 + 1
dr − π2

∫

∞

0

dr

r2 + 1
+ i

∫

∞

0

2π ln r

r2 + 1
dr

Taking the real parts of both sides we get

2

∫

∞

0

(ln r)2

r2 + 1
dr = π2

∫

∞

0

dr

r2 + 1
− π3

4

2

∫

∞

0

(ln r)2

r2 + 1
dr = π2

(π

2

)

− π3

4

2

∫

∞

0

(ln r)2

r2 + 1
dr =

π3

4
∫

∞

0

(ln r)2

r2 + 1
dr =

π3
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Note that in the above steps we used the fact that

∫

∞

0

dr

r2 + 1
=

π

2

3. Evaluate the integral
∫ 2π

0

dθ

5 + 4 sin θ

Solution: We turn the integral into a complex integral by integrating over C, the unit
circle |z| = 1 oriented counterclockwise, and using the substitutions

dθ =
dz

iz
, sin θ =

z − 1
z

2i

to rewrite the integral as

∫ 2π

0

dθ

5 + 4 sin θ
=

∫

C

1

5 + 4
(

z− 1
z

2i

) · dz

iz

=

∫

C

1

5iz + 2z2 − 2
dz

=

∫

C

1

2z2 + 5iz − 2
dz
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The denominator can be factored into (z + 2i)(2z + i) so the singular points are − i
2

and −2i. Only − i
2

lies inside the contour C. Therefore, the value of the integral is

∫

C

1

2z2 + 5iz − 2
dz = 2πi Res

z=−i/2
f(z)

Note that − i
2

is a simple pole of f(z). Letting p(z) = 1, q(z) = 2z2 + 5iz − 2, and
q′(z) = 4z + 5i, the residue is

Res
z=−i/2

f(z) =
p(− i

2
)

q′(− i
2
)

=
1

4(− i
2
) + 5i

=
1

3i

The value of the integral is then

∫ 2π

0

dθ

5 + 4 sin θ
=

∫

C

1

2z2 + 5iz − 2
dz

= 2πi Res
z=−i/2

f(z)

= 2πi

(

1

3i

)

=
2π

3

4. Show that
∫ π

−π

dθ

1 + cos2 θ
= π

√
2

Solution: We turn the integral into a complex integral by integrating over C, the unit
circle |z| = 1 oriented counterclockwise, and using the substitutions

dθ =
dz

iz
, cos θ =

z + 1
z

2

to rewrite the integral as

∫ π

−π

dθ

1 + cos2 θ
=

∫

C

1

1 +
(

z+ 1
z

2

)2 · dz

iz

=

∫

C

1

1 + z2

4
+ 1

2
+ 1

4z2

· dz

iz

=
1

i

∫

C

1
z3

4
+ 3z

2
+ 1

4z

dz

=
4

i

∫

C

z

z4 + 6z + 1
dz
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The singular points of the integrand are solutions to z4 + 6z2 + 1 = 0. Using the
quadratic formula to solve for z2 we have

z2 =
−6 ±

√

62 − 4(1)(1)

2(1)

z2 =
−6 ±

√
32

2

z2 = −3 ± 2
√

2

Taking the positive sign, we have z2
1,2 = −3+2

√
2 which we note is negative. Therefore,

two singular points are

z1,2 = ±i

√

3 − 2
√

2

Taking the negative sign, we have z2
3,4 = −3 − 2

√
2 which we note is also negative.

Therefore, the other two singular points are

z3,4 = ±i

√

3 + 2
√

2

Of the four singular points, only z1,2 lie in the unit circle. These points are simple
poles so we can use the formula

Res
z=zk

f(z) =
p(zk)

q′(zk)

to find the residues at z1,2. Letting p(z) = z, q(z) = z4 +6z2 +1, and q′(z) = 4z3 +12z
we have

Res
z=zk

f(z) =
zk

4z3
k + 12zk

=
1

4(z2
k + 3)

To simplify the calculations here we’ll note that because z2
1,2 = −3 + 2

√
2 we have

z2
1,2 + 3 = 2

√
2

Therefore, the residues at z1,2 are

Res
z=z1,2

f(z) =
1

4(z2
k + 3)

=
1

4(2
√

2)
=

1

8
√

2

The value of the integral is then
∫ π

−π

dθ

1 + cos2 θ
=

4

i

∫

C

z

z4 + 6z + 1
dz

=
4

i
· 2πi

(

Res
z=z1

f(z) + Res
z=z2

f(z)

)

= 8π

(

1

8
√

2
+

1

8
√

2

)

= π
√

2
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5. Use the formula for the Inverse Laplace Transform to evaluate the inverse of the func-

tion F (s) =
1

(s2 + 1)2
.

Solution: No thanks.

6. Show that 2z5 + 8z − 1 = 0 has exactly four roots in the annulus 1 < |z| < 2.

Solution: To show that the equation has four roots in the given annulus, we will first
show that it has one root inside the circle |z| = 1 and then show that it has five roots
inside the circle |z| = 2.

• Let C1 be the circle |z| = 1. Define f(z) = 8z and g(z) = 2z5 − 1. Both functions
are analytic on and inside C1. We also have

|f(z)| = |8z| = 8|z| = 8

and
|g(z)| = |2z5 − 1| ≤ 2|z|5 + 1 = 3

for all z on C1. So we have established that |f(z)| > |g(z)| for all z on C1.
By Rouché’s Theorem, since f(z) = 8z has one zero inside C1 then so does
f(z) + g(z) = 2z5 + 8z − 1.

• Now let C2 be the circle |z| = 2. Define f(z) = 2z5 and g(z) = 8z − 1. Both
functions are analytic on and inside C2. We also have

|f(z)| = |2z5| = 2|z|5 = 2(2)5 = 64

and
|g(z)| = |8z − 1| ≤ 8|z| + 1 = 8(2) + 1 = 17

for all z on C2. So we have established that |f(z)| > |g(z)| for all z on C2. By
Rouché’s Theorem, since f(z) = 2z5 has five zeros inside C2 (counting multiplic-
ities) then so does f(z) + g(z) = 2z5 + 8z − 1.

Finally, since 2z5 + 8z − 1 has one zero inside C1 and five zeros inside C2, it has four
zeros in the annulus 1 < |z| < 2.
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