1. Compute the improper integral

$$
\int_{0}^{\infty} \frac{\cos 2 x}{\left(x^{2}+1\right)^{2}} d x
$$

Solution: To evaluate the integral consider the complex integral

$$
\int_{C} \frac{e^{i(2 z)}}{\left(z^{2}+1\right)^{2}} d z
$$

where $C$ is the union of the contours $C_{1}$ and $C_{R}$ shown below.


The complex integral can be split into two integrals:

$$
\int_{C} \frac{e^{i(2 z)}}{\left(z^{2}+1\right)^{2}} d z=\int_{C_{1}} \frac{e^{i(2 z)}}{\left(z^{2}+1\right)^{2}} d z+\int_{C_{R}} \frac{e^{i(2 z)}}{\left(z^{2}+1\right)^{2}} d z
$$

Let's compute each integral in turn.
(i) The function $f(z)=\frac{e^{i(2 z)}}{\left(z^{2}+1\right)^{2}}$ has singular points at $i$ and $-i$. Only the former is inside the contour $C$. Therefore, the integral over $C$ is

$$
\int_{C} \frac{e^{i(2 z)}}{\left(z^{2}+1\right)^{2}} d z=2 \pi i \operatorname{Res}_{z=i} f(z)
$$

To find the residue, we note that the point $i$ is a pole of order 2 . To see this, we define the function $\phi(z)$ as

$$
\phi(z)=\frac{e^{i(2 z)}}{(z+i)^{2}}
$$

so that

$$
f(z)=\frac{\phi(z)}{(z-i)^{2}}
$$

Since $\phi(z)$ is analytic and nonzero at $i$, the point is a pole of order 2 and the residue is

$$
\begin{aligned}
\operatorname{Res}_{z=i} f(z) & =\frac{1}{1!} \phi^{\prime}(i) \\
& =\left.\frac{(z+i)^{2}\left(2 i e^{i(2 z)}\right)-2(z+i) e^{i(2 z)}}{(z+i)^{4}}\right|_{z=i} \\
& =\frac{(i+i)^{2}\left(2 i e^{2 i^{2}}\right)-2(i+i) e^{2 i^{2}}}{(i+i)^{4}} \\
& =\frac{-8 i e^{-2}-4 i e^{-2}}{16} \\
& =-\frac{3}{4} e^{-2} i
\end{aligned}
$$

Therefore, the value of the integral over $C$ is

$$
\begin{aligned}
\int_{C} \frac{e^{i(2 z)}}{\left(z^{2}+1\right)^{2}} d z & =2 \pi i \operatorname{Res}_{z=i} f(z) \\
& =2 \pi i\left(-\frac{3}{4} e^{-2} i\right) \\
& =\frac{3 \pi}{2} e^{-2}
\end{aligned}
$$

(ii) The integral over $C_{1}$ is

$$
\begin{aligned}
\int_{C_{1}} \frac{e^{i(2 z)}}{\left(z^{2}+1\right)^{2}} d z & =\int_{-R}^{R} \frac{e^{i(2 x)}}{\left(x^{2}+1\right)^{2}} d x \\
& =\int_{-R}^{R} \frac{\cos 2 x}{\left(x^{2}+1\right)^{2}} d x+i \int_{-R}^{R} \frac{\sin 2 x}{\left(x^{2}+1\right)^{2}} d x
\end{aligned}
$$

(iii) Finally, we use the $M L$-Bound formula to evaluate the integral over $C_{R}$. First, we note that the length of the contour is $L=\pi R$. Then, we find an upper bound $M$ on $|f(z)|$ over $C_{R}$ by noting that

$$
\begin{aligned}
\left|\frac{e^{i(2 z)}}{\left(z^{2}+1\right)^{2}}\right| & =\frac{\left|e^{2 i(x+i y)}\right|}{\left|z^{2}+1\right|^{2}} \\
& <\frac{e^{-2 y}}{\left(R^{2}-1\right)^{2}} \\
& \leq \frac{1}{\left(R^{2}-1\right)^{2}}=M
\end{aligned}
$$

where we used the fact that (1) $\left|e^{-2 y}\right| \leq 1$ for all $z$ on $C_{R}$ since $e^{-2 y}$ takes on its maximum value on $C_{R}$ when $y=0$ and (2) $\left|z^{2}+1\right| \leq\left||z|^{2}-1\right|=R^{2}-1$ using the Triangle Inequality. Thus, the modulus of the integral over $C_{R}$ is bounded as follows:

$$
\left|\int_{C_{R}} \frac{e^{i(2 z)}}{\left(z^{2}+1\right)^{2}}\right| \leq \frac{\pi R}{\left(R^{2}-1\right)^{2}}
$$

Putting it all together and taking the limit as $R \rightarrow \infty$ we have

$$
\begin{aligned}
\lim _{R \rightarrow \infty} \int_{C} \frac{e^{i(2 z)}}{\left(z^{2}+1\right)^{2}} d z & =\lim _{R \rightarrow \infty} \int_{C_{1}} \frac{e^{i(2 z)}}{\left(z^{2}+1\right)^{2}} d z+\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{e^{i(2 z)}}{\left(z^{2}+1\right)^{2}} d z \\
\frac{3 \pi}{2} e^{-2} & =\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{\cos 2 x}{\left(x^{2}+1\right)^{2}} d x+i \lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{\sin 2 x}{\left(x^{2}+1\right)^{2}} d x+0 \\
\frac{3 \pi}{2} e^{-2} & =\text { P.V. } \int_{-\infty}^{\infty} \frac{\cos 2 x}{\left(x^{2}+1\right)^{2}} d x+i \text { P.V. } \int_{-R}^{R} \frac{\sin 2 x}{\left(x^{2}+1\right)^{2}} d x
\end{aligned}
$$

Taking the real parts of both sides of the above equation gives us

$$
\frac{3 \pi}{2} e^{-2}=\mathrm{P} . \mathrm{V} . \int_{-\infty}^{\infty} \frac{\cos 2 x}{\left(x^{2}+1\right)^{2}} d x
$$

Note that the integrand $f(x)=\frac{\cos 2 x}{\left(x^{2}+1\right)^{2}}$ is an even function so that the principal value of the integral is the actual value. Furthermore,

$$
\int_{-\infty}^{\infty} \frac{\cos 2 x}{\left(x^{2}+1\right)^{2}} d x=2 \int_{0}^{\infty} \frac{\cos 2 x}{\left(x^{2}+1\right)^{2}} d x
$$

So our final answer is

$$
\int_{0}^{\infty} \frac{\cos 2 x}{\left(x^{2}+1\right)^{2}} d x=\frac{3 \pi}{4} e^{-2}
$$

2. Show that

$$
\int_{0}^{\infty} \frac{(\ln x)^{2}}{x^{2}+1} d x=\frac{\pi^{3}}{8}
$$

Solution: To evaluate the integral consider the complex integral

$$
\int_{C} \frac{(\log z)^{2}}{z^{2}+1} d z
$$

where $C$ is the union of the contours $C_{1}, C_{R}, C_{2}$, and $C_{\varepsilon}$ shown below. Note that we take the branch cut $-\frac{\pi}{2}<\theta<\frac{3 \pi}{2}$ in order to avoid the contour.


The complex integral can be split into four integrals:

$$
\int_{C} \frac{(\log z)^{2}}{z^{2}+1} d z=\int_{C_{1}} \frac{(\log z)^{2}}{z^{2}+1} d z+\int_{C_{R}} \frac{(\log z)^{2}}{z^{2}+1} d z+\int_{C_{2}} \frac{(\log z)^{2}}{z^{2}+1} d z+\int_{C_{\varepsilon}} \frac{(\log z)^{2}}{z^{2}+1} d z
$$

Let's compute each integral in turn.
(i) The function $f(z)=\frac{(\log z)^{2}}{z^{2}+1}$ has infinitely many singular points but only $z=i$ is inside $C$. Therefore, the integral over $C$ is

$$
\int_{C} \frac{(\log z)^{2}}{z^{2}+1} d z=2 \pi i \operatorname{Res}_{z=i} f(z)
$$

To find the residue, we note that the point $i$ is a simple pole. To see this, we define the function $\phi(z)$ as

$$
\phi(z)=\frac{(\log z)^{2}}{z+i}
$$

so that

$$
f(z)=\frac{\phi(z)}{(z-i)^{1}}
$$

Since $\phi(z)$ is analytic and nonzero at $i$, the point is a pole of order 1 and the residue is

$$
\begin{aligned}
\operatorname{Res}_{z=i} f(z) & =\phi(i) \\
& =\frac{(\log i)^{2}}{i+i} \\
& =\frac{\left(\ln 1+i \cdot \frac{\pi}{2}\right)^{2}}{2 i} \\
& =\frac{\pi^{2}}{8} i
\end{aligned}
$$

Therefore, the value of the integral over $C$ is

$$
\begin{aligned}
\int_{C} \frac{(\log z)^{2}}{z^{2}+1} d z & =2 \pi i \operatorname{Res}_{z=i} f(z) \\
& =2 \pi i\left(\frac{\pi^{2}}{8} i\right) \\
& =-\frac{\pi^{3}}{4}
\end{aligned}
$$

(ii) The integral over $C_{1}$ is parametrized by $z=r e^{i(0)}=r, \varepsilon \leq r \leq R$ so that $d z=d r$ and we get

$$
\begin{aligned}
\int_{C_{1}} \frac{(\log z)^{2}}{z^{2}+1} d z & =\int_{\varepsilon}^{R} \frac{(\ln r+i(0))^{2}}{r^{2}+1} d r \\
& =\int_{\varepsilon}^{R} \frac{(\ln r)^{2}}{r^{2}+1} d r
\end{aligned}
$$

(iii) We use the $M L$-Bound formula to evaluate the integral over $C_{R}$. First, we note that the length of the contour is $L=\pi R$. Then, we find an upper bound $M$ on $|f(z)|$ over $C_{R}$ by noting that
where we used the Triangle Inequality on both the numerator and denominator. Thus, the modulus of the integral over $C_{R}$ is bounded as follows:

$$
\left|\int_{C_{R}} \frac{(\log z)^{2}}{z^{2}+1}\right| \leq \frac{\pi R(\ln R+\pi)^{2}}{R^{2}-1}
$$

We note that the right hand side of the above inequality goes to 0 as $R \rightarrow \infty$.
(iv) The integral over $C_{2}$ is parametrized by $z=r e^{i \pi}=-r, \varepsilon \leq r \leq R$ so that $d z=-d r$ and we get

$$
\begin{aligned}
\int_{C_{2}} \frac{(\log z)^{2}}{z^{2}+1} d z & =\int_{R}^{\varepsilon} \frac{(\ln r+i \pi)^{2}}{r^{2}+1}(-d r) \\
& =\int_{\varepsilon}^{R} \frac{(\ln r)^{2}+(2 \pi \ln r) i-\pi^{2}}{r^{2}+1} d r \\
& =\int_{\varepsilon}^{R} \frac{(\ln r)^{2}}{r^{2}+1}-\pi^{2} \int_{\varepsilon}^{R} \frac{d r}{r^{2}+1}+i \int_{\varepsilon}^{R} \frac{2 \pi \ln r}{r^{2}+1} d r
\end{aligned}
$$

(v) Finally, we use the $M L$-Bound formula to evaluate the integral over $C_{\varepsilon}$. First, we note that the length of the contour is $L=\pi \varepsilon$. Then, we find an upper bound $M$ on $|f(z)|$ over $C_{\varepsilon}$ by noting that
where we used the Triangle Inequality on both the numerator and denominator. Thus, the modulus of the integral over $C_{\varepsilon}$ is bounded as follows:

$$
\left|\int_{C_{\varepsilon}} \frac{(\log z)^{2}}{z^{2}+1}\right| \leq \frac{\pi \varepsilon(-\ln \varepsilon+\pi)^{2}}{1-\varepsilon^{2}}
$$

We note that the right hand side of the above inequality goes to 0 as $\varepsilon \rightarrow 0^{+}$.

Putting it all together and taking the limit as $\varepsilon \rightarrow 0^{+}$and $R \rightarrow \infty$ we get

$$
\begin{aligned}
\int_{C} \frac{(\log z)^{2}}{z^{2}+1} d z & =\int_{C_{1}} \frac{(\log z)^{2}}{z^{2}+1} d z+\int_{C_{R}} \frac{(\log z)^{2}}{z^{2}+1} d z+\int_{C_{2}} \frac{(\log z)^{2}}{z^{2}+1} d z+\int_{C_{\varepsilon}} \frac{(\log z)^{2}}{z^{2}+1} d z \\
-\frac{\pi^{3}}{4} & =\int_{0}^{\infty} \frac{(\ln r)^{2}}{r^{2}+1} d r+0+\int_{0}^{\infty} \frac{(\ln r)^{2}}{r^{2}+1}-\pi^{2} \int_{0}^{\infty} \frac{d r}{r^{2}+1}+i \int_{0}^{\infty} \frac{2 \pi \ln r}{r^{2}+1} d r+0 \\
-\frac{\pi^{3}}{4} & =2 \int_{0}^{\infty} \frac{(\ln r)^{2}}{r^{2}+1} d r-\pi^{2} \int_{0}^{\infty} \frac{d r}{r^{2}+1}+i \int_{0}^{\infty} \frac{2 \pi \ln r}{r^{2}+1} d r
\end{aligned}
$$

Taking the real parts of both sides we get

$$
\begin{aligned}
& 2 \int_{0}^{\infty} \frac{(\ln r)^{2}}{r^{2}+1} d r=\pi^{2} \int_{0}^{\infty} \frac{d r}{r^{2}+1}-\frac{\pi^{3}}{4} \\
& 2 \int_{0}^{\infty} \frac{(\ln r)^{2}}{r^{2}+1} d r=\pi^{2}\left(\frac{\pi}{2}\right)-\frac{\pi^{3}}{4} \\
& 2 \int_{0}^{\infty} \frac{(\ln r)^{2}}{r^{2}+1} d r=\frac{\pi^{3}}{4} \\
& \int_{0}^{\infty} \frac{(\ln r)^{2}}{r^{2}+1} d r=\frac{\pi^{3}}{8}
\end{aligned}
$$

Note that in the above steps we used the fact that

$$
\int_{0}^{\infty} \frac{d r}{r^{2}+1}=\frac{\pi}{2}
$$

3. Evaluate the integral

$$
\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta}
$$

Solution: We turn the integral into a complex integral by integrating over $C$, the unit circle $|z|=1$ oriented counterclockwise, and using the substitutions

$$
d \theta=\frac{d z}{i z}, \quad \sin \theta=\frac{z-\frac{1}{z}}{2 i}
$$

to rewrite the integral as

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta} & =\int_{C} \frac{1}{5+4\left(\frac{z-\frac{1}{z}}{2 i}\right)} \cdot \frac{d z}{i z} \\
& =\int_{C} \frac{1}{5 i z+2 z^{2}-2} d z \\
& =\int_{C} \frac{1}{2 z^{2}+5 i z-2} d z
\end{aligned}
$$

The denominator can be factored into $(z+2 i)(2 z+i)$ so the singular points are $-\frac{i}{2}$ and $-2 i$. Only $-\frac{i}{2}$ lies inside the contour $C$. Therefore, the value of the integral is

$$
\int_{C} \frac{1}{2 z^{2}+5 i z-2} d z=2 \pi i \operatorname{Res}_{z=-i / 2} f(z)
$$

Note that $-\frac{i}{2}$ is a simple pole of $f(z)$. Letting $p(z)=1, q(z)=2 z^{2}+5 i z-2$, and $q^{\prime}(z)=4 z+5 i$, the residue is

$$
\operatorname{Res}_{z=-i / 2} f(z)=\frac{p\left(-\frac{i}{2}\right)}{q^{\prime}\left(-\frac{i}{2}\right)}=\frac{1}{4\left(-\frac{i}{2}\right)+5 i}=\frac{1}{3 i}
$$

The value of the integral is then

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta} & =\int_{C} \frac{1}{2 z^{2}+5 i z-2} d z \\
& =2 \pi i \operatorname{Res}_{z=-i / 2}^{\operatorname{Res}} f(z) \\
& =2 \pi i\left(\frac{1}{3 i}\right) \\
& =\frac{2 \pi}{3}
\end{aligned}
$$

4. Show that

$$
\int_{-\pi}^{\pi} \frac{d \theta}{1+\cos ^{2} \theta}=\pi \sqrt{2}
$$

Solution: We turn the integral into a complex integral by integrating over $C$, the unit circle $|z|=1$ oriented counterclockwise, and using the substitutions

$$
d \theta=\frac{d z}{i z}, \quad \cos \theta=\frac{z+\frac{1}{z}}{2}
$$

to rewrite the integral as

$$
\begin{aligned}
\int_{-\pi}^{\pi} \frac{d \theta}{1+\cos ^{2} \theta} & =\int_{C} \frac{1}{1+\left(\frac{z+\frac{1}{z}}{2}\right)^{2}} \cdot \frac{d z}{i z} \\
& =\int_{C} \frac{1}{1+\frac{z^{2}}{4}+\frac{1}{2}+\frac{1}{4 z^{2}}} \cdot \frac{d z}{i z} \\
& =\frac{1}{i} \int_{C} \frac{1}{\frac{z^{3}}{4}+\frac{3 z}{2}+\frac{1}{4 z}} d z \\
& =\frac{4}{i} \int_{C} \frac{z}{z^{4}+6 z+1} d z
\end{aligned}
$$

The singular points of the integrand are solutions to $z^{4}+6 z^{2}+1=0$. Using the quadratic formula to solve for $z^{2}$ we have

$$
\begin{aligned}
& z^{2}=\frac{-6 \pm \sqrt{6^{2}-4(1)(1)}}{2(1)} \\
& z^{2}=\frac{-6 \pm \sqrt{32}}{2} \\
& z^{2}=-3 \pm 2 \sqrt{2}
\end{aligned}
$$

Taking the positive sign, we have $z_{1,2}^{2}=-3+2 \sqrt{2}$ which we note is negative. Therefore, two singular points are

$$
z_{1,2}= \pm i \sqrt{3-2 \sqrt{2}}
$$

Taking the negative sign, we have $z_{3,4}^{2}=-3-2 \sqrt{2}$ which we note is also negative. Therefore, the other two singular points are

$$
z_{3,4}= \pm i \sqrt{3+2 \sqrt{2}}
$$

Of the four singular points, only $z_{1,2}$ lie in the unit circle. These points are simple poles so we can use the formula

$$
\operatorname{Res}_{z=z_{k}} f(z)=\frac{p\left(z_{k}\right)}{q^{\prime}\left(z_{k}\right)}
$$

to find the residues at $z_{1,2}$. Letting $p(z)=z, q(z)=z^{4}+6 z^{2}+1$, and $q^{\prime}(z)=4 z^{3}+12 z$ we have

$$
\operatorname{Res}_{z=z_{k}} f(z)=\frac{z_{k}}{4 z_{k}^{3}+12 z_{k}}=\frac{1}{4\left(z_{k}^{2}+3\right)}
$$

To simplify the calculations here we'll note that because $z_{1,2}^{2}=-3+2 \sqrt{2}$ we have

$$
z_{1,2}^{2}+3=2 \sqrt{2}
$$

Therefore, the residues at $z_{1,2}$ are

$$
\operatorname{Res}_{z=z_{1,2}} f(z)=\frac{1}{4\left(z_{k}^{2}+3\right)}=\frac{1}{4(2 \sqrt{2})}=\frac{1}{8 \sqrt{2}}
$$

The value of the integral is then

$$
\begin{aligned}
\int_{-\pi}^{\pi} \frac{d \theta}{1+\cos ^{2} \theta} & =\frac{4}{i} \int_{C} \frac{z}{z^{4}+6 z+1} d z \\
& =\frac{4}{i} \cdot 2 \pi i\left(\operatorname{Res}_{z=z_{1}} f(z)+\operatorname{Res}_{z=z_{2}} f(z)\right) \\
& =8 \pi\left(\frac{1}{8 \sqrt{2}}+\frac{1}{8 \sqrt{2}}\right) \\
& =\pi \sqrt{2}
\end{aligned}
$$

5. Use the formula for the Inverse Laplace Transform to evaluate the inverse of the function $F(s)=\frac{1}{\left(s^{2}+1\right)^{2}}$.

Solution: No thanks.
6. Show that $2 z^{5}+8 z-1=0$ has exactly four roots in the annulus $1<|z|<2$.

Solution: To show that the equation has four roots in the given annulus, we will first show that it has one root inside the circle $|z|=1$ and then show that it has five roots inside the circle $|z|=2$.

- Let $C_{1}$ be the circle $|z|=1$. Define $f(z)=8 z$ and $g(z)=2 z^{5}-1$. Both functions are analytic on and inside $C_{1}$. We also have

$$
|f(z)|=|8 z|=8|z|=8
$$

and

$$
|g(z)|=\left|2 z^{5}-1\right| \leq 2|z|^{5}+1=3
$$

for all $z$ on $C_{1}$. So we have established that $|f(z)|>|g(z)|$ for all $z$ on $C_{1}$. By Rouché's Theorem, since $f(z)=8 z$ has one zero inside $C_{1}$ then so does $f(z)+g(z)=2 z^{5}+8 z-1$.

- Now let $C_{2}$ be the circle $|z|=2$. Define $f(z)=2 z^{5}$ and $g(z)=8 z-1$. Both functions are analytic on and inside $C_{2}$. We also have

$$
|f(z)|=\left|2 z^{5}\right|=2|z|^{5}=2(2)^{5}=64
$$

and

$$
|g(z)|=|8 z-1| \leq 8|z|+1=8(2)+1=17
$$

for all $z$ on $C_{2}$. So we have established that $|f(z)|>|g(z)|$ for all $z$ on $C_{2}$. By Rouché's Theorem, since $f(z)=2 z^{5}$ has five zeros inside $C_{2}$ (counting multiplicities) then so does $f(z)+g(z)=2 z^{5}+8 z-1$.

Finally, since $2 z^{5}+8 z-1$ has one zero inside $C_{1}$ and five zeros inside $C_{2}$, it has four zeros in the annulus $1<|z|<2$.

