Math 417 - Midterm Exam Solutions
 Friday, July 11, 2008

1. Find all values of:
(a) $\log (3-4 i)$
(b) $(2+2 i)^{i}$

Solution:

(a) The modulus of $z=3-4 i$ is $r=5$ and the principal argument is $\Theta=\tan ^{-1}\left(-\frac{4}{3}\right)$. Therefore, the values of $\log (3-4 i)$ are

$$
\begin{gathered}
\log z=\ln r+i(\Theta+2 k \pi) \\
\log (3-4 i)=\ln 5+i\left[\tan ^{-1}\left(-\frac{4}{3}\right)+2 k \pi\right]
\end{gathered}
$$

where $k=0, \pm 1, \pm 2, \ldots$..
(b) The values of $(2+2 i)^{i}$ are obtained using the formula

$$
(2+2 i)^{i}=e^{i \log (2+2 i)}
$$

The modulus of $z=2+2 i$ is $r=2 \sqrt{2}$ and the principal argument is $\Theta=\frac{\pi}{4}$. Therefore,

$$
\begin{aligned}
& i \log (2+2 i)=i\left[\ln 2 \sqrt{2}+i\left(\frac{\pi}{4}+2 k \pi\right)\right] \\
& i \log (2+2 i)=-\left(\frac{\pi}{4}+2 k \pi\right)+i \ln 2 \sqrt{2}
\end{aligned}
$$

and

$$
(2+2 i)^{i}=e^{-(\pi / 4+2 k \pi)}[\cos (\ln 2 \sqrt{2})+i \sin (\ln 2 \sqrt{2})]
$$

where $k=0, \pm 1, \pm 2, \ldots$.
2. Complete each of the following:
(a) Is $\left|e^{z}\right|=e^{|z|}$? Explain.
(b) Explain why the following reasoning is incorrect:

$$
\left|e^{i z}\right|=|\cos z+i \sin z|=\sqrt{\cos ^{2} z+\sin ^{2} z}=1 \quad \text { for all } z
$$

Solution:

(a) Since $\left|e^{z}\right|=e^{x}$ and $e^{|z|}=e^{\sqrt{x^{2}+y^{2}}}$, these quantities are equal when $y=0$ and $x \geq 0$.
(b) The reasoning fails because $|\cos z+i \sin z| \neq \sqrt{\cos ^{2} z+\sin ^{2} z}$. By definition, the modulus of a complex number $a+b i$ is $\sqrt{a^{2}+b^{2}}$ where a and b are real numbers. In general, $\cos z$ and $\sin z$ are not real.
The modulus of $e^{i z}$ is $\left|e^{i z}\right|=e^{-y}$ which is only equal to 1 when $y=0$, i.e. when z is real.
3. Determine the values of z for which the function $f(z)=x e^{z}$ is analytic. If f is analytic at $z=0$, then compute $f^{\prime}(0)$.

Solution: Let $z=x+i y$. Then

$$
f(z)=x e^{x+i y}=x e^{x} \cos y+i x e^{x} \sin y
$$

We define $u(x, y)=x e^{x} \cos y$ and $v(x, y)=x e^{x} \sin y$. Their first partial derivatives are

$$
\begin{aligned}
& u_{x}=\left(x e^{x}+e^{x}\right) \cos y, \quad v_{y}=x e^{x} \cos y \\
& u_{y}=-x e^{x} \sin y, \quad v_{x}=\left(x e^{x}+e^{x}\right) \sin y
\end{aligned}
$$

In order for the Cauchy-Riemann equations ($u_{x}=v_{y}, u_{y}=-v_{x}$) to be satisfied, we need

$$
\begin{aligned}
u_{x} & =v_{y} & u_{y} & =-v_{x} \\
\left(x e^{x}+e^{x}\right) \cos y & =x e^{x} \cos y & -x e^{x} \sin y & =-\left(x e^{x}+e^{x}\right) \sin y \\
e^{x} \cos y & =0 & e^{x} \sin y & =0 \\
\cos y & =0 & \sin y & =0
\end{aligned}
$$

However, we know that $\cos y$ and $\sin y$ cannot be 0 simultaneously. Therefore, $f(z)$ is not differentiable nor analytic anywhere.
4. Consider the function $u(x, y)=e^{2 x} \sin (2 y)+2 x$.
(a) Show that $u(x, y)$ is harmonic in the entire z plane.
(b) Find a harmonic conjugate $v(x, y)$ of $u(x, y)$. Then express $f=u+i v$ as a function of z.

Solution:

(a) First, we can see that u has continuous derivatives of all orders for all x, y. Next, we have

$$
\begin{aligned}
u_{x} & =2 e^{2 x} \sin (2 y)+2 & u_{y} & =2 e^{2 x} \cos (2 y) \\
u_{x x} & =4 e^{2 x} \sin (2 y) & u_{y y} & =-4 e^{2 x} \sin (2 y)
\end{aligned}
$$

Clearly, we have $u_{x x}+u_{y y}=0$ for all x, y. Therefore, $u(x, y)$ is harmonic everywhere
(b) To find a harmonic conjugate $v(x, y)$ of $u(x, y)$ we must choose $v(x, y)$ to satisfy the Cauchy-Riemann equations:

$$
\begin{array}{ll}
v_{y}=u_{x} & v_{x}=-u_{y} \\
v_{y}=2 e^{2 x} \sin (2 y)+2 & v_{x}=-2 e^{2 x} \cos (2 y)
\end{array}
$$

The most general function that satisfies these equations is

$$
v(x, y)=-e^{2 x} \cos (2 y)+2 y+C
$$

5. Let C be a contour consisting of the two straight-line segments: (1) from $z=i$ to $z=1+i$ and (2) from $z=1+i$ to $z=1-2 i$. Compute the integral:

$$
I=\int_{C} e^{z} d z
$$

(a) by finding a parametric representation $z(t)=x(t)+i y(t), a \leq t \leq b$ for each line segment and computing:

$$
\int_{a}^{b} f(z(t)) z^{\prime}(t) d t
$$

over each arc of the contour and
(b) verifying the result above by using an antiderivative $F(z)$ of $f(z)=e^{z}$.

Solution:

(a) See HW 4 solutions.
(b) The function $f(z)=e^{z}$ is entire so it has an antiderivative $F(z)=e^{z}$ everywhere in the complex plane. The value of the integral is then

$$
\int_{C} e^{z} d z=F(1-2 i)-F(i)=e^{1-2 i}=e^{i}
$$

6. Consider the integral:

$$
I=\int_{C} \frac{d z}{z(z+5)}
$$

where C is the rectangle with corners at $z=3+3 i, z=-3+3 i, z=-3-3 i$, and $z=3-3 i$, oriented counterclockwise.
(a) Find an upper bound on $|I|$. Justify your answer.
(b) Compute the exact value of $|I|$.

Solution:

(a) We use the $M L$-Bound formula to find an upper bound on $|I|$. First, the length of C is the perimeter of the square which is $L=24$. Next, we find an upper bound on $|f(z)|$ by using some properties of moduli as follows:

$$
|f(z)|=\left|\frac{1}{z(z+5)}\right|=\frac{1}{|z||z+5|}
$$

To find an upper bound on $|f(z)|$ we look for the smallest possible values of $|z|$ and $|z+5|$ for all z on the contour. The value of $|z|$ is smallest when $z=3,-3,3 i,-3 i$ since these points are the ones on C closest to the origin. The value of $|z+5|$ is smallest when $z=-3$ since this point is the point on C closest to $z=-5$. Therefore,

$$
|f(z)|=\frac{1}{|z||z+5|} \leq \frac{1}{|3||-3+5|}=\frac{1}{6}=M
$$

and an upper bound on $|I|$ is

$$
|I| \leq M L=\frac{1}{6} \cdot 24=4
$$

(b) We find the exact value of $|I|$ by first using the Method of Partial Fractions to rewrite the integral as

$$
I=\int_{C} \frac{d z}{z(z+5)}=\frac{1}{5} \int_{C} \frac{d z}{z}-\frac{1}{5} \int_{C} \frac{d z}{z+5}
$$

The function $\frac{1}{z+5}$ is analytic everywhere on and inside the simple closed contour C. Therefore, by the Cauchy-Goursat Theorem we have

$$
\int_{C} \frac{d z}{z+5}=0
$$

To evaluate the first integral we notice that $\frac{1}{z}$ is analytic everywhere except $z=0$, so we can deform the path into a circle of radius 1 centered at the origin. Therefore,

$$
\int_{C} \frac{d z}{z}=2 \pi i
$$

The value if I is then

$$
I=\int_{C} \frac{d z}{z(z+5)}=\frac{1}{5}(2 \pi i)-\frac{1}{5}(0)=\frac{2 \pi i}{5}
$$

and its modulus is

$$
|I|=\frac{2 \pi}{5}
$$

which agrees with the upper bound we found in part (a).

