Math 417, Complex Analysis, Midterm Exam
 Friday, July 11, 2008

YOU MUST SHOW ALL OF YOUR COMPUTATIONS IN THE EXAM BOOKLET TO RECEIVE FULL CREDIT

1. Find all values of:
(a) $\log (3-4 i)$
(b) $(2+2 i)^{i}$
2. Complete each of the following:
(a) Is $\left|e^{z}\right|=e^{|z|}$? Explain.
(b) Explain why the following reasoning is incorrect:

$$
\left|e^{i z}\right|=|\cos z+i \sin z|=\sqrt{\cos ^{2} z+\sin ^{2} z}=1 \quad \text { for all } z
$$

3. Determine the values of z for which the function $f(z)=x e^{z}$ is analytic. If f is analytic at $z=0$, then compute $f^{\prime}(0)$.
4. Consider the function $u(x, y)=e^{2 x} \sin (2 y)+2 x$.
(a) Show that $u(x, y)$ is harmonic in the entire z plane.
(b) Find a harmonic conjugate $v(x, y)$ of $u(x, y)$. Then express $f=u+i v$ as a function of z.
5. Let C be a contour consisting of the two straight-line segments: (1) from $z=i$ to $z=1+i$ and (2) from $z=1+i$ to $z=1-2 i$. Compute the integral:

$$
I=\int_{C} e^{z} d z
$$

(a) by finding a parametric representation $z(t)=x(t)+i y(t), a \leq t \leq b$ for each line segment and computing:

$$
\int_{a}^{b} f(z(t)) z^{\prime}(t) d t
$$

over each arc of the contour and
(b) verifying the result above by using an antiderivative $F(z)$ of $f(z)=e^{z}$.
6. Consider the integral:

$$
I=\int_{C} \frac{d z}{z(z+5)}
$$

where C is the rectangle with corners at $z=3+3 i, z=-3+3 i, z=-3-3 i$, and $z=3-3 i$, oriented counterclockwise.
(a) Find an upper bound on $|I|$. Justify your answer.
(b) Compute the exact value of $|I|$.

