
Math 417 – Midterm Exam Solutions

Friday, July 9, 2010

Solve any 4 of Problems 1–6 and 1 of Problems 7–8. Write your solutions in the booklet
provided. If you attempt more than 5 problems, you must clearly indicate which problems
should be graded. Answers without justification will receive little to no credit.

1. (a) Evaluate (−1 + i)50 and write your answer in the form a + bi.

(b) Find all values of log(−2i).

(c) Find all solutions to the equation z3 = −8. Write your answers in the form a+ bi.

Solution:

(a) The modulus of z = −1 + i is |z| =
√

2 and the principal argument is Θ =
3π

4
.

Using DeMoivre’s Theorem we have

(−1 + i)50 = r50 (cos 50Θ + i sin 50Θ)

(−1 + i)50 =
(√

2
)50

(

cos
150π

4
+ i sin

150π

4

)

(−1 + i)50 = 225

(

cos
75π

2
+ i sin

75π

2

)

We note that the angle
75π

2
is equivalent to

3π

2
since

75π

2
−18(2π) =

3π

2
. There-

fore,

(−1 + i)50 = 225

(

cos
3π

2
+ i sin

3π

2

)

= −225i

(b) The modulus of z = −2i is |z| = 2 and the principal argument is Θ = −π

2
. Using

the definition of log z we have

log z = ln r + i (Θ + 2kπ)

log(−2i) = ln 2 + i
(

−π

2
+ 2kπ

)

where k = 0,±1,±2, . . ..

(c) The solutions to the equation are the cube roots of −8. We use the formula:

z1/3 = r1/3

[

cos

(

Θ + 2kπ

3

)

+ i sin

(

Θ + 2kπ

3

)]

, k = 0, 1, 2



The modulus of z = −8 is |z| = r = 8 and the principal argument is Θ = π.
Therefore, the solutions are

z1/3 = 81/3

[

cos

(

π + 2(0)π

3

)

+ i sin

(

π + 2(0)π

3

)]

= 2
(

cos
π

3
+ i sin

π

3

)

= 1 + i
√

3

z1/3 = 81/3

[

cos

(

π + 2(1)π

3

)

+ i sin

(

π + 2(1)π

3

)]

= 2 (cosπ + i sin π) = −2

z1/3 = 81/3

[

cos

(

π + 2(2)π

3

)

+ i sin

(

π + 2(2)π

3

)]

= 2

(

cos
5π

3
+ i sin

5π

3

)

= 1 − i
√

3

2. (a) Sketch the set of points defined by the inequality |z + 2| ≤ |z|.
(b) Sketch the image of the set of points in the z-plane defined by −π

2
≤ x ≤ π

2
,

0 ≤ y < ∞ under the transformation w = sin z.

Solution:

(a) Letting z = x + iy we have

|z + 2| ≤ |z|
|x + iy + 2| ≤ |x + iy|

|(x + 2) + iy| ≤ |x + iy|
√

(x + 2)2 + y2 ≤
√

x2 + y2

(x + 2)2 + y2 ≤ x2 + y2

x2 + 4x + 4 + y2 ≤ x2 + y2

4x + 4 ≤ 0

x ≤ −1

Part (a)

-1 1 2

x

-2

-1

1

2

y

-2-3

Part (b)

-1 1 2

u

-2

-1

1

2

v

-2



(b) First, we want to write sin z in terms of x and y.

w = sin(z) = sin x cosh y + i cos x sinh y

We consider w to be complex and write w = uiv so that

u = sin x cosh y

v = cos x sinh y

Now let’s consider the transformation of each boundary.

i. For −π

2
≤ x ≤ π

2
, y = 0 we have

u = sin x cosh 0 = sin x

v = cos x sinh 0 = 0

Thus, the transformation is the line segment −1 ≤ u ≤ 1, v = 0.

ii. For x = −π

2
, 0 ≤ y < ∞ we have

u = sin
(

−π

2

)

cosh y = − cosh y

v = cos
(

−π

2

)

sinh y = 0

Thus, the transformation is the line segment −∞ < u ≤ −1, v = 0.

iii. For x =
π

2
, 0 ≤ y < ∞ we have

u = sin
π

2
cosh y = cosh y

v = cos
π

2
sinh y = 0

Thus, the transformation is the line segment 1 ≤ u < ∞, v = 0.

Putting these together, the boundary of the given region is transformed into the
entire u-axis in the w-plane. Now take a test point in the given region, say,
z = 0 + i. Then we have

u = sin 0 cosh 1 = 0

v = cos 0 sinh 1 =
e − e−1

2
> 0

The transformation of z = 0+ i is w = 0 + i

(

e − e−1

2

)

which is in the upper half

of the w-plane.



3. In each part below, z is a complex number.

(a) Show that |z2| = |z|2 for all z.

(b) Find the values of z, if any, for which ez = ez.

Solution:

(a) This can be proven in one of two ways. If we let z = x + iy then

|z2| = |(x + iy)2|
|z2| = |(x2 − y2) + i(2xy)|
|z2| =

√

(x2 − y2)2 + (2xy)2

|z2| =
√

x4 − 2x2y2 + y4 + 4x2 + y2

|z2| =
√

x4 + 2x2y2 + y4

|z2| =
√

(x2 + y2)2

|z2| = x2 + y2

|z2| = |z|2

for all z. If, instead, we let z = reiθ then

|z2| = |r2e2iθ| = r2|e2iθ| = r2 = |z|2

for all z.

(b) If we let z = x + iy then

ez = ex+iy

ez = exeiy

ez = ex(cos y + i sin y)

ez = ex(cos y − i sin y)

ez = exe−iy

ez = ex−iy

ez = ez

for all z.

4. Consider the function f(z) = z2z̄.

(a) Write the function in the form f(z) = u(x, y) + iv(x, y).

(b) Find all values of z for which f ′(z) exists.



Solution:

(a) Let z = x + iy. Then z = x − iy and we have

f(z) = z2z̄

f(z) = (x + iy)2(x − iy)

f(z) =
[

(x2 − y2) + i(2xy)
]

(x − iy)

f(z) = x(x2 − y2) + 2xy2 + i
[

−y(x2 − y2) + 2x2y
]

f(z) = x3 + xy2 + i(y3 + x2y)

(b) Let u(x, y) = x3 + xy2 and v(x, y) = y3 + x2y. Both u(x, y) and v(x, y) have
continuous derivatives of all orders everywhere in the complex plane. The first
partial derivatives are

ux = 3x2 + y2, vy = 3y2 + x2

uy = 2xy, vx = 2xy

In order for the Cauchy-Riemann equations to be satisfied we need

ux = vy uy = −vx

3x2 + y2 = 3y2 + x2 2xy = −2xy

2x2 = 2y2 4xy = 0

x = ±y xy = 0

The second equation says that either x = 0 or y = 0. If x = 0 then the first
equation says that = 0. If y = 0 then the first equation says that x = 0. Thus,
the C-R equations are only satisfied when z = 0 and f ′(z) exists only when z = 0.

5. Determine the values of z for which the function f(z) = z̄ex is differentiable and
evaluate f ′(z) at each point. At what points, if any, is f(z) analytic?

Solution: Let z = x + iy. Then

f(z) = z̄ex

f(z) = (x − iy)ex

f(z) = xex + i(−yex)

We have u(x, y) = xex and v(x, y) = −yex. These functions have continous derivatives
of all orders everywhere in the complex plane. The first partial derivatives are

ux = xex + ex, vy = −ex

uy = 0, vx = −yex



In order for the Cauchy-Riemann equations to be satisfied we need

ux = vy uy = −vx

xex + ex = −ex 0 = −yex

xex + 2ex = 0 yex = 0

ex(x + 2) = 0

Since ex > 0 for all x, the first equation tells us that x = −2 and the second equation
tells us that y = 0. Therefore, the C-R equations are only satisfied when z = −2 and
f ′(z) exists only when z = −2. There is no neighborhood of z = −2 throughout which
f ′(z) exists. Thus, f(z) is analytic nowhere.

6. Consider the function u(x, y) = xy3 − x3y + 2x − 6y.

(a) Show that u(x, y) is harmonic in the entire complex plane.

(b) Find a harmonic conjugate v(x, y) of u(x, y).

Solution:

(a) The function u(x, y) has continuous derivatives of all orders everywhere in the
complex plane. The first and second partial derivatives are

ux = y3 − 3x2y + 2, uxx = −6xy

uy = 3xy2 − x3 − 6, uyy = 6xy

We can see that uxx + uyy = −6xy + 6xy = 0 for all x, y. Therefore, u(x, y) is
harmonic in the entire complex plane.

(b) A harmonic conjugate v(x, y) of u(x, y) must satisfy the Cauchy-Riemann equa-
tions.

vy = ux vx = −uy

vy = y3 − 3x2y + 2 vx = −3xy2 + x3 + 6

Integrating the first equation with respect to y we have

∫

vy dy =

∫

(y3 − 3x2y + 2) dy

v(x, y) =
1

4
y4 − 3

2
x2y2 + 2y + φ(x)



Differentiating this equation with respect to x and setting the result equation to
the equation for vx above we get

∂

∂x
v(x, y) = vx

∂

∂x

(

1

4
y4 − 3

2
x2y2 + 2y + φ(x)

)

= −3xy2 + x3 + 6

−3xy2 + φ′(x) = −3xy2 + x3 + 6

φ′(x) = x3 + 6

φ(x) =

∫

(x3 + 6) dx

φ(x) =
1

4
x4 + 6x + C

Therefore, the family of harmonic conjugates of u(x, y) are

v(x, y) =
1

4
(x4 + y4) − 3

2
x2y2 + 2y + 6x + C

7. Consider the integral

I =

∫

C

(

z̄2 − z̄
)

dz

where C is the circle |z| = 2 oriented counterclockwise.

(a) Use the ML-Bound formula to find an upper bound on |I|.
(b) Find the exact value of |I|.

Solution:

(a) First, the length of the contour is L = 2πr = 2π(2) = 4π. Next, we find an upper
bound on |f(z)| for all z on C using the Triangle Inequality.

∣

∣z̄2 − z̄
∣

∣ ≤ |z̄2| + |z̄| = |z|2 + |z| = 22 + 2 = 6

Therefore, we let M = 6 and we get the following upper bound on |I|:

|I| ≤ ML = 6(4π) = 24π

(b) The function f(z) = z̄2 − z̄ is analytic nowhere. So we have to parametrize the



contour. Let z(t) = 2eit where 0 ≤ t ≤ 2π. Then z̄ = 2e−it, z′(t) = 2ieit, and

∫

C

f(z) dz =

∫ b

a

f(z(t))z′(t) dt

∫

C

(z̄2 − z̄) dz =

∫

2π

0

(

4e−2it − 2e−it
)

(2ieit) dt

= 4i

∫

2π

0

(

2e−it − 1
)

dt

= 4i

[

−2

i
e−it − t

]2π

0

= 4i

[

−2

i
e−2πi − 2π +

2

i
e0 + 0

]

= 4i

[

−2

i
− 2π +

2

i

]

= −8πi

So the exact value of |I| is |I| = 8π.

8. Evaluate the integral
∫

C

|z|2 dz

where the contour C is

(a) the line segment with initial point −1 and final point i

(b) the arc of the unit circle |z| = 1 traversed in the clockwise direction with initial
point −1 and final point i.

Why don’t the two results agree?

Solution:

(a) A parametrization of C is z(t) = t+ i(t+1) where −1 ≤ t ≤ 0. Then z′(t) = 1+ i



and we have

∫

C

f(z) dz =

∫ b

a

f(z(t))z′(t) dt

∫

C

|z|2 dz =

∫

0

−1

[

t2 + (t + 1)2
]

(1 + i) dt

= (1 + i)

∫

0

−1

(2t2 + 2t + 1) dt

= (1 + i)

[

2

3
t3 + t2 + t

]0

−1

= (1 + i)

[

0 −
(

−2

3
+ 1 − 1

)]

=
2

3
(1 + i)

(b) A parametrization of C is z(t) = eit where
π

2
≤ t ≤ π. Then z′(t) = ieit and

∫

C

f(z) dz =

∫ b

a

f(z(t))z′(t) dt

∫

C

|z|2 dz =

∫ π/2

π

|eit|2(ieit) dt

=

∫ π/2

π

ieit dt

= eit
∣

∣

∣

π/2

π

= eiπ/2 − eiπ

= i + 1

The results do not agree because f(z) is analytic nowhere so the integral is not
path independent.


