Math 417 - Midterm Exam Solutions
 Friday, July 9, 2010

Solve any 4 of Problems 1-6 and 1 of Problems 7-8. Write your solutions in the booklet provided. If you attempt more than 5 problems, you must clearly indicate which problems should be graded. Answers without justification will receive little to no credit.

1. (a) Evaluate $(-1+i)^{50}$ and write your answer in the form $a+b i$.
(b) Find all values of $\log (-2 i)$.
(c) Find all solutions to the equation $z^{3}=-8$. Write your answers in the form $a+b i$.

Solution:

(a) The modulus of $z=-1+i$ is $|z|=\sqrt{2}$ and the principal argument is $\Theta=\frac{3 \pi}{4}$. Using DeMoivre's Theorem we have

$$
\begin{aligned}
& (-1+i)^{50}=r^{50}(\cos 50 \Theta+i \sin 50 \Theta) \\
& (-1+i)^{50}=(\sqrt{2})^{50}\left(\cos \frac{150 \pi}{4}+i \sin \frac{150 \pi}{4}\right) \\
& (-1+i)^{50}=2^{25}\left(\cos \frac{75 \pi}{2}+i \sin \frac{75 \pi}{2}\right)
\end{aligned}
$$

We note that the angle $\frac{75 \pi}{2}$ is equivalent to $\frac{3 \pi}{2}$ since $\frac{75 \pi}{2}-18(2 \pi)=\frac{3 \pi}{2}$. Therefore,

$$
(-1+i)^{50}=2^{25}\left(\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}\right)=-2^{25} i
$$

(b) The modulus of $z=-2 i$ is $|z|=2$ and the principal argument is $\Theta=-\frac{\pi}{2}$. Using the definition of $\log z$ we have

$$
\begin{gathered}
\log z=\ln r+i(\Theta+2 k \pi) \\
\log (-2 i)=\ln 2+i\left(-\frac{\pi}{2}+2 k \pi\right)
\end{gathered}
$$

where $k=0, \pm 1, \pm 2, \ldots$.
(c) The solutions to the equation are the cube roots of -8 . We use the formula:

$$
z^{1 / 3}=r^{1 / 3}\left[\cos \left(\frac{\Theta+2 k \pi}{3}\right)+i \sin \left(\frac{\Theta+2 k \pi}{3}\right)\right], \quad k=0,1,2
$$

The modulus of $z=-8$ is $|z|=r=8$ and the principal argument is $\Theta=\pi$. Therefore, the solutions are

$$
\begin{aligned}
& z^{1 / 3}=8^{1 / 3}\left[\cos \left(\frac{\pi+2(0) \pi}{3}\right)+i \sin \left(\frac{\pi+2(0) \pi}{3}\right)\right]=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)=1+i \sqrt{3} \\
& z^{1 / 3}=8^{1 / 3}\left[\cos \left(\frac{\pi+2(1) \pi}{3}\right)+i \sin \left(\frac{\pi+2(1) \pi}{3}\right)\right]=2(\cos \pi+i \sin \pi)=-2 \\
& z^{1 / 3}=8^{1 / 3}\left[\cos \left(\frac{\pi+2(2) \pi}{3}\right)+i \sin \left(\frac{\pi+2(2) \pi}{3}\right)\right]=2\left(\cos \frac{5 \pi}{3}+i \sin \frac{5 \pi}{3}\right)=1-i \sqrt{3}
\end{aligned}
$$

2. (a) Sketch the set of points defined by the inequality $|z+2| \leq|z|$.
(b) Sketch the image of the set of points in the z-plane defined by $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$, $0 \leq y<\infty$ under the transformation $w=\sin z$.

Solution:

(a) Letting $z=x+i y$ we have

$$
\begin{aligned}
|z+2| & \leq|z| \\
|x+i y+2| & \leq|x+i y| \\
|(x+2)+i y| & \leq|x+i y| \\
\sqrt{(x+2)^{2}+y^{2}} & \leq \sqrt{x^{2}+y^{2}} \\
(x+2)^{2}+y^{2} & \leq x^{2}+y^{2} \\
x^{2}+4 x+4+y^{2} & \leq x^{2}+y^{2} \\
4 x+4 & \leq 0 \\
x & \leq-1
\end{aligned}
$$

(b) First, we want to write $\sin z$ in terms of x and y.

$$
w=\sin (z)=\sin x \cosh y+i \cos x \sinh y
$$

We consider w to be complex and write $w=u_{i} v$ so that

$$
\begin{aligned}
& u=\sin x \cosh y \\
& v=\cos x \sinh y
\end{aligned}
$$

Now let's consider the transformation of each boundary.
i. For $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}, y=0$ we have

$$
\begin{aligned}
& u=\sin x \cosh 0=\sin x \\
& v=\cos x \sinh 0=0
\end{aligned}
$$

Thus, the transformation is the line segment $-1 \leq u \leq 1, v=0$.
ii. For $x=-\frac{\pi}{2}, 0 \leq y<\infty$ we have

$$
\begin{aligned}
& u=\sin \left(-\frac{\pi}{2}\right) \cosh y=-\cosh y \\
& v=\cos \left(-\frac{\pi}{2}\right) \sinh y=0
\end{aligned}
$$

Thus, the transformation is the line segment $-\infty<u \leq-1, v=0$.
iii. For $x=\frac{\pi}{2}, 0 \leq y<\infty$ we have

$$
\begin{aligned}
& u=\sin \frac{\pi}{2} \cosh y=\cosh y \\
& v=\cos \frac{\pi}{2} \sinh y=0
\end{aligned}
$$

Thus, the transformation is the line segment $1 \leq u<\infty, v=0$.
Putting these together, the boundary of the given region is transformed into the entire u-axis in the w-plane. Now take a test point in the given region, say, $z=0+i$. Then we have

$$
\begin{aligned}
& u=\sin 0 \cosh 1=0 \\
& v=\cos 0 \sinh 1=\frac{e-e^{-1}}{2}>0
\end{aligned}
$$

The transformation of $z=0+i$ is $w=0+i\left(\frac{e-e^{-1}}{2}\right)$ which is in the upper half of the w-plane.
3. In each part below, z is a complex number.
(a) Show that $\left|z^{2}\right|=|z|^{2}$ for all z.
(b) Find the values of z, if any, for which $\overline{e^{z}}=e^{\bar{z}}$.

Solution:

(a) This can be proven in one of two ways. If we let $z=x+i y$ then

$$
\begin{aligned}
& \left|z^{2}\right|=\left|(x+i y)^{2}\right| \\
& \left|z^{2}\right|=\left|\left(x^{2}-y^{2}\right)+i(2 x y)\right| \\
& \left|z^{2}\right|=\sqrt{\left(x^{2}-y^{2}\right)^{2}+(2 x y)^{2}} \\
& \left|z^{2}\right|=\sqrt{x^{4}-2 x^{2} y^{2}+y^{4}+4 x^{2}+y^{2}} \\
& \left|z^{2}\right|=\sqrt{x^{4}+2 x^{2} y^{2}+y^{4}} \\
& \left|z^{2}\right|=\sqrt{\left(x^{2}+y^{2}\right)^{2}} \\
& \left|z^{2}\right|=x^{2}+y^{2} \\
& \left|z^{2}\right|=|z|^{2}
\end{aligned}
$$

for all z. If, instead, we let $z=r e^{i \theta}$ then

$$
\left|z^{2}\right|=\left|r^{2} e^{2 i \theta}\right|=r^{2}\left|e^{2 i \theta}\right|=r^{2}=|z|^{2}
$$

for all z.
(b) If we let $z=x+i y$ then

$$
\begin{aligned}
& \overline{e^{z}}=\overline{e^{x+i y}} \\
& \overline{e^{z}}=\overline{e^{x} e^{i y}} \\
& \overline{e^{z}}=\overline{e^{x}(\cos y+i \sin y)} \\
& \overline{e^{z}}=e^{x}(\cos y-i \sin y) \\
& \overline{e^{z}}=e^{x} e^{-i y} \\
& \overline{e^{z}}=e^{x-i y} \\
& \overline{e^{z}}=e^{\bar{z}}
\end{aligned}
$$

for all z.
4. Consider the function $f(z)=z^{2} \bar{z}$.
(a) Write the function in the form $f(z)=u(x, y)+i v(x, y)$.
(b) Find all values of z for which $f^{\prime}(z)$ exists.

Solution:

(a) Let $z=x+i y$. Then $z=x-i y$ and we have

$$
\begin{aligned}
& f(z)=z^{2} \bar{z} \\
& f(z)=(x+i y)^{2}(x-i y) \\
& f(z)=\left[\left(x^{2}-y^{2}\right)+i(2 x y)\right](x-i y) \\
& f(z)=x\left(x^{2}-y^{2}\right)+2 x y^{2}+i\left[-y\left(x^{2}-y^{2}\right)+2 x^{2} y\right] \\
& f(z)=x^{3}+x y^{2}+i\left(y^{3}+x^{2} y\right)
\end{aligned}
$$

(b) Let $u(x, y)=x^{3}+x y^{2}$ and $v(x, y)=y^{3}+x^{2} y$. Both $u(x, y)$ and $v(x, y)$ have continuous derivatives of all orders everywhere in the complex plane. The first partial derivatives are

$$
\begin{aligned}
& u_{x}=3 x^{2}+y^{2}, \quad v_{y}=3 y^{2}+x^{2} \\
& u_{y}=2 x y, \quad v_{x}=2 x y
\end{aligned}
$$

In order for the Cauchy-Riemann equations to be satisfied we need

$$
\begin{array}{rlrl}
u_{x} & =v_{y} & u_{y} & =-v_{x} \\
3 x^{2}+y^{2} & =3 y^{2}+x^{2} & 2 x y & =-2 x \\
2 x^{2} & =2 y^{2} & 4 x y & =0 \\
x & = \pm y & x y & =0
\end{array}
$$

The second equation says that either $x=0$ or $y=0$. If $x=0$ then the first equation says that $=0$. If $y=0$ then the first equation says that $x=0$. Thus, the C-R equations are only satisfied when $z=0$ and $f^{\prime}(z)$ exists only when $z=0$.
5. Determine the values of z for which the function $f(z)=\bar{z} e^{x}$ is differentiable and evaluate $f^{\prime}(z)$ at each point. At what points, if any, is $f(z)$ analytic?

Solution: Let $z=x+i y$. Then

$$
\begin{aligned}
& f(z)=\bar{z} e^{x} \\
& f(z)=(x-i y) e^{x} \\
& f(z)=x e^{x}+i\left(-y e^{x}\right)
\end{aligned}
$$

We have $u(x, y)=x e^{x}$ and $v(x, y)=-y e^{x}$. These functions have continous derivatives of all orders everywhere in the complex plane. The first partial derivatives are

$$
\begin{aligned}
& u_{x}=x e^{x}+e^{x}, \quad v_{y}=-e^{x} \\
& u_{y}=0, \quad v_{x}=-y e^{x}
\end{aligned}
$$

In order for the Cauchy-Riemann equations to be satisfied we need

$$
\begin{aligned}
u_{x} & =v_{y} \\
x e^{x}+e^{x} & =-e^{x} \\
x e^{x}+2 e^{x} & =0 \\
e^{x}(x+2) & =0
\end{aligned}
$$

$$
u_{y}=-v_{x}
$$

$$
0=-y e^{x}
$$

Since $e^{x}>0$ for all x, the first equation tells us that $x=-2$ and the second equation tells us that $y=0$. Therefore, the C-R equations are only satisfied when $z=-2$ and $f^{\prime}(z)$ exists only when $z=-2$. There is no neighborhood of $z=-2$ throughout which $f^{\prime}(z)$ exists. Thus, $f(z)$ is analytic nowhere.
6. Consider the function $u(x, y)=x y^{3}-x^{3} y+2 x-6 y$.
(a) Show that $u(x, y)$ is harmonic in the entire complex plane.
(b) Find a harmonic conjugate $v(x, y)$ of $u(x, y)$.

Solution:

(a) The function $u(x, y)$ has continuous derivatives of all orders everywhere in the complex plane. The first and second partial derivatives are

$$
\begin{aligned}
& u_{x}=y^{3}-3 x^{2} y+2, \quad u_{x x}=-6 x y \\
& u_{y}=3 x y^{2}-x^{3}-6, \quad u_{y y}=6 x y
\end{aligned}
$$

We can see that $u_{x x}+u_{y y}=-6 x y+6 x y=0$ for all x, y. Therefore, $u(x, y)$ is harmonic in the entire complex plane.
(b) A harmonic conjugate $v(x, y)$ of $u(x, y)$ must satisfy the Cauchy-Riemann equations.

$$
\begin{array}{ll}
v_{y}=u_{x} & v_{x}=-u_{y} \\
v_{y}=y^{3}-3 x^{2} y+2 & v_{x}=-3 x y^{2}+x^{3}+6
\end{array}
$$

Integrating the first equation with respect to y we have

$$
\begin{aligned}
\int v_{y} d y & =\int\left(y^{3}-3 x^{2} y+2\right) d y \\
v(x, y) & =\frac{1}{4} y^{4}-\frac{3}{2} x^{2} y^{2}+2 y+\phi(x)
\end{aligned}
$$

Differentiating this equation with respect to x and setting the result equation to the equation for v_{x} above we get

$$
\begin{aligned}
\frac{\partial}{\partial x} v(x, y) & =v_{x} \\
\frac{\partial}{\partial x}\left(\frac{1}{4} y^{4}-\frac{3}{2} x^{2} y^{2}+2 y+\phi(x)\right) & =-3 x y^{2}+x^{3}+6 \\
-3 x y^{2}+\phi^{\prime}(x) & =-3 x y^{2}+x^{3}+6 \\
\phi^{\prime}(x) & =x^{3}+6 \\
\phi(x) & =\int\left(x^{3}+6\right) d x \\
\phi(x) & =\frac{1}{4} x^{4}+6 x+C
\end{aligned}
$$

Therefore, the family of harmonic conjugates of $u(x, y)$ are

$$
v(x, y)=\frac{1}{4}\left(x^{4}+y^{4}\right)-\frac{3}{2} x^{2} y^{2}+2 y+6 x+C
$$

7. Consider the integral

$$
I=\int_{C}\left(\bar{z}^{2}-\bar{z}\right) d z
$$

where C is the circle $|z|=2$ oriented counterclockwise.
(a) Use the $M L$-Bound formula to find an upper bound on $|I|$.
(b) Find the exact value of $|I|$.

Solution:

(a) First, the length of the contour is $L=2 \pi r=2 \pi(2)=4 \pi$. Next, we find an upper bound on $|f(z)|$ for all z on C using the Triangle Inequality.

$$
\left|\bar{z}^{2}-\bar{z}\right| \leq\left|\bar{z}^{2}\right|+|\bar{z}|=|z|^{2}+|z|=2^{2}+2=6
$$

Therefore, we let $M=6$ and we get the following upper bound on $|I|$:

$$
|I| \leq M L=6(4 \pi)=24 \pi
$$

(b) The function $f(z)=\bar{z}^{2}-\bar{z}$ is analytic nowhere. So we have to parametrize the
contour. Let $z(t)=2 e^{i t}$ where $0 \leq t \leq 2 \pi$. Then $\bar{z}=2 e^{-i t}, z^{\prime}(t)=2 i e^{i t}$, and

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{a}^{b} f(z(t)) z^{\prime}(t) d t \\
\int_{C}\left(\bar{z}^{2}-\bar{z}\right) d z & =\int_{0}^{2 \pi}\left(4 e^{-2 i t}-2 e^{-i t}\right)\left(2 i e^{i t}\right) d t \\
& =4 i \int_{0}^{2 \pi}\left(2 e^{-i t}-1\right) d t \\
& =4 i\left[-\frac{2}{i} e^{-i t}-t\right]_{0}^{2 \pi} \\
& =4 i\left[-\frac{2}{i} e^{-2 \pi i}-2 \pi+\frac{2}{i} e^{0}+0\right] \\
& =4 i\left[-\frac{2}{i}-2 \pi+\frac{2}{i}\right] \\
& =-8 \pi i
\end{aligned}
$$

So the exact value of $|I|$ is $|I|=8 \pi$.
8. Evaluate the integral

$$
\int_{C}|z|^{2} d z
$$

where the contour C is
(a) the line segment with initial point -1 and final point i
(b) the arc of the unit circle $|z|=1$ traversed in the clockwise direction with initial point -1 and final point i.

Why don't the two results agree?

Solution:

(a) A parametrization of C is $z(t)=t+i(t+1)$ where $-1 \leq t \leq 0$. Then $z^{\prime}(t)=1+i$
and we have

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{a}^{b} f(z(t)) z^{\prime}(t) d t \\
\int_{C}|z|^{2} d z & =\int_{-1}^{0}\left[t^{2}+(t+1)^{2}\right](1+i) d t \\
& =(1+i) \int_{-1}^{0}\left(2 t^{2}+2 t+1\right) d t \\
& =(1+i)\left[\frac{2}{3} t^{3}+t^{2}+t\right]_{-1}^{0} \\
& =(1+i)\left[0-\left(-\frac{2}{3}+1-1\right)\right] \\
& =\frac{2}{3}(1+i)
\end{aligned}
$$

(b) A parametrization of C is $z(t)=e^{i t}$ where $\frac{\pi}{2} \leq t \leq \pi$. Then $z^{\prime}(t)=i e^{i t}$ and

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{a}^{b} f(z(t)) z^{\prime}(t) d t \\
\int_{C}|z|^{2} d z & =\int_{\pi}^{\pi / 2}\left|e^{i t}\right|^{2}\left(i e^{i t}\right) d t \\
& =\int_{\pi}^{\pi / 2} i e^{i t} d t \\
& =\left.e^{i t}\right|_{\pi} ^{\pi / 2} \\
& =e^{i \pi / 2}-e^{i \pi} \\
& =i+1
\end{aligned}
$$

The results do not agree because $f(z)$ is analytic nowhere so the integral is not path independent.

