Math 180, Exam 1, Fall 2007
 Problem 1 Solution

1. Find the limit, $\lim _{x \rightarrow 1} \frac{x^{2}+2 x-3}{x^{2}-x}$.

Solution: Upon substituting $x=1$ into the function $f(x)=\frac{x^{2}+2 x-3}{x^{2}-x}$ we find that

$$
\frac{x^{2}+2 x-3}{x^{2}-x}=\frac{1^{2}+2(1)-3}{1^{2}-1}=\frac{0}{0}
$$

which is indeterminate. We can resolve the indeterminacy by factoring the numerator and denominator of $f(x)$.

$$
\lim _{x \rightarrow 1} \frac{x^{2}+2 x-3}{x^{2}-x}=\lim _{x \rightarrow 1} \frac{(x+3)(x-1)}{x(x-1)}=\lim _{x \rightarrow 1} \frac{x+3}{x}=\frac{1+3}{1}=4
$$

In the final step above we were able to plug in $x=1$ by using the fact that the function $\frac{x+3}{x}$ is continuous at $x=1$. In fact, $\frac{x+3}{x}$ is continuous at all values of x in its domain $(x \neq 0)$.

Math 180, Exam 1, Fall 2007
 Problem 2 Solution

2. Find the derivatives of the following functions using the basic rules. Do not simplify your answer.
(a) $4 x^{3}-5 x^{1 / 3}+3 x^{-2}$
(b) $\left(x^{2}-3 x\right) e^{x}$
(c) $\frac{x-3}{x^{2}+x+1}$

Solution:

(a) Use the Power Rule.

$$
\left(4 x^{3}-5 x^{1 / 3}+3 x^{-2}\right)^{\prime}=12 x^{2}-\frac{5}{3} x^{-2 / 3}-6 x^{-3}
$$

(b) Use the Product Rule.

$$
\begin{aligned}
{\left[\left(x^{2}-3 x\right) e^{x}\right]^{\prime} } & =\left(x^{2}-3 x\right)\left(e^{x}\right)^{\prime}+\left(x^{2}-3 x\right)^{\prime} e^{x} \\
& =\left(x^{2}-3 x\right) e^{x}+(2 x-3) e^{x}
\end{aligned}
$$

(c) Use the Quotient Rule.

$$
\begin{aligned}
\left(\frac{x-3}{x^{2}+x+1}\right)^{\prime} & =\frac{\left(x^{2}+x+1\right)(x-3)^{\prime}-(x-3)\left(x^{2}+x+1\right)^{\prime}}{\left(x^{2}+x+1\right)^{2}} \\
& =\frac{\left(x^{2}+x+1\right)-(x-3)(2 x+1)}{\left(x^{2}+x+1\right)^{2}}
\end{aligned}
$$

Math 180, Exam 1, Fall 2007
 Problem 3 Solution

3. Find the equation of the tangent line to $y=x^{3}-3 x$ at $x=2$.

Solution: The derivative y^{\prime} is found using the Power Rule.

$$
y^{\prime}=\left(x^{3}-3 x\right)^{\prime}=3 x^{2}-3
$$

At $x=2$ the values of y and y^{\prime} are:

$$
\begin{aligned}
y(2) & =2^{3}-3(2)=2 \\
y^{\prime}(2) & =3(2)^{2}-3=9
\end{aligned}
$$

We now know that the point $(2,2)$ is on the tangent line and that the slope of the tangent line is 9 . Therefore, an equation for the tangent line in point-slope form is:

$$
y-2=9(x-2)
$$

Math 180, Exam 1, Fall 2007
 Problem 4 Solution

4. Let $f(x)=\sqrt{x}$.
(a) Find the average rate of change of $f(x)$ over the interval $4 \leq x \leq 9$.
(b) Find the instantaneous rate of change of $f(x)$ at $x=4$.

Solution:

(a) The average rate of change formula is:

$$
\text { average } \mathrm{ROC}=\frac{f(b)-f(a)}{b-a}
$$

Using $f(x)=\sqrt{x}, b=9$, and $a=4$ we have:

$$
\text { average } \mathrm{ROC}=\frac{\sqrt{9}-\sqrt{4}}{9-4}=\frac{3-2}{5}=\frac{1}{5}
$$

(b) The instantaneous rate of change at $x=4$ is $f^{\prime}(4)$. The derivative $f^{\prime}(x)$ is:

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x}}
$$

At $x=4$ we have:

$$
\text { instantaneous } \mathrm{ROC}=f^{\prime}(4)=\frac{1}{2 \sqrt{4}}=\frac{1}{4}
$$

Math 180, Exam 1, Fall 2007
 Problem 5 Solution

5. Let $f(x)=\frac{1}{x}$.
(a) Write the derivative, $f^{\prime}(5)$, as the limit of the difference quotient.
(b) Evaluate this limit to find $f^{\prime}(5)$.

Solution:

(a) There are two possible difference quotients we can use to evaluate $f^{\prime}(5)$. One is:

$$
f^{\prime}(5)=\lim _{h \rightarrow 0} \frac{f(h+5)-f(5)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{h+5}-\frac{1}{5}}{h} .
$$

The other is:

$$
f^{\prime}(5)=\lim _{x \rightarrow 5} \frac{f(x)-f(5)}{x-5}=\lim _{x \rightarrow 5} \frac{\frac{1}{x}-\frac{1}{5}}{x-5}
$$

(b) Evaluating the first limit above we have:

$$
\begin{aligned}
f^{\prime}(5) & =\lim _{h \rightarrow 0} \frac{\frac{1}{h+5}-\frac{1}{5}}{h} \cdot \frac{5(h+5)}{5(h+5)} \\
& =\lim _{h \rightarrow 0} \frac{5-(h+5)}{5 h(h+5)} \\
& =\lim _{h \rightarrow 0} \frac{-h}{5 h(h+5)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{5(h+5)} \\
& =\frac{-1}{5(0+5)} \\
& =-\frac{1}{25}
\end{aligned}
$$

Evaluating the second limit we have:

$$
\begin{aligned}
f^{\prime}(5) & =\lim _{x \rightarrow 5} \frac{\frac{1}{x}-\frac{1}{5}}{x-5} \cdot \frac{5 x}{5 x} \\
& =\lim _{x \rightarrow 5} \frac{5-x}{5 x(x-5)} \\
& =\lim _{x \rightarrow 5} \frac{-(x-5)}{5 x(x-5)} \\
& =\lim _{x \rightarrow 5} \frac{-1}{5 x} \\
& =\frac{-1}{5(5)} \\
& =-\frac{1}{25}
\end{aligned}
$$

Math 180, Exam 1, Fall 2007
 Problem 6 Solution

6. Use the table below, which shows values of $f(x)$ for x near 2.5 ,

x	2.3	2.4	2.5	2.6	2.7
$f(x)$	1.41	1.40	1.38	1.35	1.31

to find the slope of a secant line that is an estimate for $f^{\prime}(2.5)$. Why did you choose the line you did?

Solution: An approximate value for $f^{\prime}(2.5)$ is

$$
f^{\prime}(2.5) \approx \frac{f(2.6)-f(2.5)}{2.6-2.5}=\frac{1.35-1.38}{0.1}=-0.3
$$

This formula was used because the exact value of $f^{\prime}(2.5)$ is:

$$
f^{\prime}(2.5)=\lim _{x \rightarrow 2.5} \frac{f(x)-f(2.5)}{x-2.5}
$$

As we approach $x=2.5$ from the right, we can plug in either $x=2.7$ or $x=2.6$ to estimate the value of $f^{\prime}(2.5)$. We used $x=2.6$ because the estimate is generally more accurate as x gets closer and closer to 2.5 .

