Math 180, Exam 1, Fall 2009
 Problem 1 Solution

1. Evaluate the following limits.
(a) $\lim _{x \rightarrow 2} \frac{x^{2}-6 x+8}{x-2}$
(b) $\lim _{x \rightarrow 1} \frac{x^{2}-6 x+8}{x-2}$

Solution:

(a) Upon substituting $x=2$ into the function $f(x)=\frac{x^{2}-6 x+8}{x-2}$ we find that

$$
\frac{x^{2}-6 x+8}{x-2}=\frac{2^{2}-6(2)+8}{2-2}=\frac{0}{0}
$$

which is indeterminate. We can resolve the indeterminacy by factoring.

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-6 x+8}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)(x-4)}{x-2} \\
& =\lim _{x \rightarrow 2}(x-4) \\
& =2-4 \\
& =-2
\end{aligned}
$$

(b) The function $f(x)=\frac{x^{2}-6 x+8}{x-2}$ is continuous at $x=1$. In fact, it is continuous at all $x \neq 2$. Therefore, we can evaluate the limit using substitution.

$$
\lim _{x \rightarrow 1} \frac{x^{2}-6 x+8}{x-2}=\frac{1^{2}-6(1)+8}{1-2}=-3
$$

Math 180, Exam 1, Fall 2009
 Problem 2 Solution

2. Find the derivatives of the following functions using the basic rules. Leave your answers in an unsimplified form so that it is clear what method you used.
(a) $x^{5}+x^{-1 / 4}+19$
(b) $\left(x^{4}+x\right) e^{x}$
(c) $\frac{2 x+1}{3 x+2}$

Solution:

(a) Use the Power Rule.

$$
\left(x^{5}+x^{-1 / 4}+19\right)^{\prime}=5 x^{4}-\frac{1}{4} x^{-5 / 4}
$$

(b) Use the Product Rule.

$$
\begin{aligned}
{\left[\left(x^{4}+x\right) e^{x}\right]^{\prime} } & =\left(x^{4}+x\right)\left(e^{x}\right)^{\prime}+\left(x^{4}+x\right)^{\prime} e^{x} \\
& =\left(x^{4}+x\right) e^{x}+\left(4 x^{3}+1\right) e^{x}
\end{aligned}
$$

(c) Use the Quotient Rule.

$$
\begin{aligned}
\left(\frac{2 x+1}{3 x+2}\right)^{\prime} & =\frac{(3 x+2)(2 x+1)^{\prime}-(2 x+1)(3 x+2)^{\prime}}{(3 x+2)^{2}} \\
& =\frac{2(3 x+2)-3(2 x+1)}{(3 x+2)^{2}}
\end{aligned}
$$

Math 180, Exam 1, Fall 2009
 Problem 3 Solution

3. Find the equation of the tangent line to $y=1+\sqrt{x}$ at $x=25$.

Solution: The derivative y^{\prime} is found using the Power Rule.

$$
y^{\prime}=(1+\sqrt{x})^{\prime}=\frac{1}{2 \sqrt{x}}
$$

At $x=25$ the values of y and y^{\prime} are:

$$
\begin{aligned}
y(25) & =1+\sqrt{25}=6 \\
y^{\prime}(25) & =\frac{1}{2 \sqrt{25}}=\frac{1}{10}
\end{aligned}
$$

We now know that the point $(25,6)$ is on the tangent line and that the slope of the tangent line is $\frac{1}{10}$. Therefore, an equation for the tangent line in point-slope form is:

$$
y-6=\frac{1}{10}(x-25)
$$

Math 180, Exam 1, Fall 2009
 Problem 4 Solution

4. Find a specific value for δ such that, if $|x-3|<\delta$, then $|2 x-6|<0.01$.

Solution: Working with the inequality $|2 x-6|<0.01$ we have:

$$
\begin{aligned}
|2 x-6| & <0.01 \\
2|x-3| & <0.01 \\
|x-3| & <0.005
\end{aligned}
$$

Thus, we choose $\delta=0.005$. This guarantees that if $|x-3|<0.005$ then $|2 x-6|<0.01$.
Note that we can choose any δ that is less than or equal to 0.005 .

Math 180, Exam 1, Fall 2009
 Problem 5 Solution

5. Suppose that

$$
\begin{array}{ll}
f(4)=4, & f^{\prime}(4)=-2 \\
g(4)=5, & g^{\prime}(4)=-3
\end{array}
$$

Find the derivative of the quotient function $\frac{f(x)}{g(x)}$ at $x=4$.
Solution: Using the Quotient Rule we have:

$$
\left[\frac{f(x)}{g(x)}\right]^{\prime}=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}
$$

At $x=4$, the value of the derivative is:

$$
\begin{aligned}
{\left.\left[\frac{f(x)}{g(x)}\right]^{\prime}\right|_{x=4} } & =\frac{g(4) f^{\prime}(4)-f(4) g^{\prime}(4)}{[g(4)]^{2}} \\
& =\frac{(5)(-2)-(4)(-3)}{5^{2}} \\
& =\frac{2}{25}
\end{aligned}
$$

Math 180, Exam 1, Fall 2009
 Problem 6 Solution

6. The table below shows some values of functions $f(x), g(x)$, and $h(x)$ in the interval $1 \leq x \leq 3$.

x	1	1.5	2	2.5	3
$f(x)$	0.25	0.75	0.75	0.25	-0.75
$g(x)$	0.75	0.25	-0.25	-0.75	-1.25
$h(x)$	1.5	0.5	-0.5	-1.5	-2.5

(a) Calculate the average rate of change of $f(x)$ on the interval $1 \leq x \leq 3$.
(b) Which one of the functions g and h is the derivative of f ? Explain your answer by citing some feature of the data.

Solution:

(a) The average rate of change formula is:

$$
\text { average } \mathrm{ROC}=\frac{f(b)-f(a)}{b-a}
$$

where $b=3$ and $a=1$. Therefore, the average rate of change of $f(x)$ on the interval is:

$$
\text { average } \mathrm{ROC}=\frac{f(3)-f(1)}{3-1}=\frac{-0.75-0.25}{2}=-0.5
$$

(b) To estimate the derivative $f^{\prime}(2)$ we use the formula:

$$
f^{\prime}(2) \approx \frac{f(x)-f(2)}{x-2}
$$

Choosing $x=2.5$ we get the estimate:

$$
f^{\prime}(2) \approx \frac{f(2.5)-f(2)}{2.5-2}=\frac{0.25-0.75}{0.5}=-1
$$

Choosing $x=1.5$ we get the estimate:

$$
f^{\prime}(2) \approx \frac{f(1.5)-f(2)}{1.5-2}=\frac{0.75-0.75}{-0.5}=0
$$

The average of these two estimates is:

$$
\text { average estimate of } f^{\prime}(2)=\frac{-1+0}{2}=-0.5
$$

Note that this is the value of $h(2)$. Therefore, it appears that h is the derivative of f.

