Math 180, Exam 1, Fall 2011
 Problem 1 Solution

1. Evaluate the following limits. Show your work.
(a) $\lim _{x \rightarrow 0} \frac{2 \cos x}{\sqrt{x+1}-2}$
(b) $\lim _{x \rightarrow+\infty} \frac{2 x^{2}+4 x-1}{x^{3}+1}$

Solution:

(a) The function $f(x)=\frac{2 \cos x}{\sqrt{x+1}-2}$ is continuous for all $x \in(-1,3) \cup(3,+\infty)$. Therefore, since $f(x)$ is continuous at $x=0$, we can evaluate the limit using substitution.

$$
\lim _{x \rightarrow 0} \frac{2 \cos x}{\sqrt{x+1}-2}=\frac{2 \cos 0}{\sqrt{0+1}-2}=-2
$$

(b) This is a limit at infinity of a rational function. Our approach is to multiply the function by $\frac{1}{x^{3}}$ divided by itself and simplify:

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \frac{2 x^{2}+4 x-1}{x^{3}+1} & =\lim _{x \rightarrow+\infty} \frac{2 x^{2}+4 x-1}{x^{3}+1} \cdot \frac{\frac{1}{x^{3}}}{\frac{1}{x^{3}}} \\
& =\lim _{x \rightarrow+\infty} \frac{\frac{2}{x}+\frac{4}{x^{2}}-\frac{1}{x^{3}}}{1+\frac{1}{x^{3}}}
\end{aligned}
$$

Using the fact that $\lim _{x \rightarrow+\infty} \frac{1}{x^{n}}=0$ for $n>0$, we find that:

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \frac{2 x^{2}+4 x-1}{x^{3}+1} & =\lim _{x \rightarrow+\infty} \frac{\frac{2}{x}+\frac{4}{x^{2}}-\frac{1}{x^{3}}}{1+\frac{1}{x^{3}}} \\
& =\frac{0+0-0}{1+0} \\
& =0
\end{aligned}
$$

Math 180, Exam 1, Fall 2011
 Problem 2 Solution

2. Compute the derivatives of the following functions AND state where the derivative does not exist. Show your work and do not simplify your answers.
(a) $\frac{x^{2}+1}{x}$
(b) $|x|$
(c) $e^{\sin (3 x)}$

Solution:

(a) We begin by rewriting the function as follows:

$$
\frac{x^{2}+1}{x}=\frac{x^{2}}{x}+\frac{1}{x}=x+\frac{1}{x}
$$

We now use the Power Rule to compute the derivative:

$$
\left(\frac{x^{2}+1}{x}\right)^{\prime}=\left(x+\frac{1}{x}\right)^{\prime}=1-\frac{1}{x^{2}}
$$

The derivative exists for all $x \neq 0$.
(b) By definition, the absolute value function is the piecewise defined function:

$$
|x|=\left\{\begin{aligned}
x & \text { if } x \geq 0 \\
-x & \text { if } x<0
\end{aligned}\right.
$$

The derivative of $|x|$ is then:

$$
(|x|)^{\prime}=\left\{\begin{aligned}
1 & \text { if } x>0 \\
-1 & \text { if } x<0
\end{aligned}\right.
$$

The derivative exists for all $x \neq 0$. It does not exist at $x=0$ because the limit

$$
\lim _{h \rightarrow 0} \frac{|0+h|-|0|}{h}
$$

which defines the derivative of $|x|$ at $x=0$, does not exist (the one-sided limits are 1 and -1).
(c) We use the Chain Rule.

$$
\left(e^{\sin (3 x)}\right)^{\prime}=e^{\sin (3 x)}(\sin (3 x))^{\prime}=e^{\sin (3 x)} \cdot 3 \cos (3 x)
$$

The derivative exists for all x.

Math 180, Exam 1, Fall 2011
 Problem 3 Solution

3. (a) Find an equation of the tangent line at $x_{0}=1$ to the graph of the following function:

$$
f(x)=x^{4}-x^{2}+1
$$

(b) Find all those points x_{0} where the tangent line to the graph is horizontal. Show your work.

Solution: (a) The slope of the tangent line is the derivative $f^{\prime}(1)$ and a point on the tangent line is $(1, f(1))$. The derivative of $f(x)$ is $f^{\prime}(x)=4 x^{3}-2 x$. Therefore, $f^{\prime}(1)=2$. We also have $f(1)=1$. Thus, the equation of the tangent line in point-slope form is:

$$
y-1=2(x-1)
$$

(b) A horizontal line has a slope of 0 . Therefore, we seek the values of x satisfying $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
4 x^{3}-2 x & =0 \\
2 x\left(2 x^{2}-1\right) & =0
\end{aligned}
$$

We either have $2 x=0$ or $2 x^{2}-1=0$. The first equation gives us $x=0$ while the second equation gives us $x= \pm \frac{1}{\sqrt{2}}$.

Math 180, Exam 1, Fall 2011
 Problem 4 Solution

4. Use the Intermediate Value Theorem to show that there exists a solution to the equation $\cos x=x$ on the interval $\left[0, \frac{\pi}{2}\right]$. Show your work.

Solution: Let $f(x)=\cos (x)-x$. First we recognize that $f(x)$ is continuous everywhere. Next, we must show that $f(0)$ and $f\left(\frac{\pi}{2}\right)$ have opposite signs.

$$
\begin{aligned}
& f(0)=\cos (0)-0=1 \\
& f(1)=\cos \left(\frac{\pi}{2}\right)-\frac{\pi}{2}=-\frac{\pi}{2}
\end{aligned}
$$

Since $f(0)>0$ and $f\left(\frac{\pi}{2}\right)<0$, the Intermediate Value Theorem tells us that $f(c)=0$ for some c in the interval $\left(0, \frac{\pi}{2}\right)$.

Math 180, Exam 1, Fall 2011
 Problem 5 Solution

5. Consider the function f whose graph appears below and answer the following questions. You must justify all answers.
(a) (i) Is $f(1)$ defined? If so, what is it?
(ii) Does $\lim _{x \rightarrow 1} f(x)$ exist? If so, what is it?
(iii) Is f continuous at 1 ?
(b) (i) Is $f(2)$ defined? If so, what is it?
(ii) Does $\lim _{x \rightarrow 2} f(x)$ exist? If so, what is it?
(iii) Is f continuous at 2?
(c) (i) Is $f(4)$ defined? If so, what is it?
(ii) Does $\lim _{x \rightarrow 4} f(x)$ exist? If so, what is it?
(iii) Is f continuous at 4?
(d) (i) Is $f(6)$ defined? If so, what is it?
(ii) Does $\lim _{x \rightarrow 6} f(x)$ exist? If so, what is it?
(iii) Is f continuous at 6 ?

Solution:

(a) (i) $f(1)=3$
(ii) $\lim _{x \rightarrow 1} f(x)$ does not exist because the one-sided limits are not the same $\left(\lim _{x \rightarrow 1^{+}} f(x)=\right.$ 3 but $\lim _{x \rightarrow 1^{-}} f(x)=2$).
(iii) f is not continuous at 1 because $\lim _{x \rightarrow 1} f(x) \neq f(1)$
(b) (i) $f(2)$ is not defined
(ii) $\lim _{x \rightarrow 2} f(x)=3$ because the one-sided limits are the same $\left(\lim _{x \rightarrow 2^{+}} f(x)=3\right.$ and $\left.\lim _{x \rightarrow 2^{-}} f(x)=3\right)$.
(iii) f is not continuous at 2 because $\lim _{x \rightarrow 2} f(x) \neq f(2)$
(c) (i) $f(4)=1$
(ii) $\lim _{x \rightarrow 4} f(x)=1$ because the one-sided limits are the same $\left(\lim _{x \rightarrow 4^{+}} f(x)=1\right.$ and $\left.\lim _{x \rightarrow 4^{-}} f(x)=1\right)$.
(iii) f is continuous at 4 because $\lim _{x \rightarrow 4} f(x)=f(4)$
(d) (i) $f(6)=3$
(ii) $\lim _{x \rightarrow 6} f(x)=2$ because the one-sided limits are the same $\left(\lim _{x \rightarrow 6^{+}} f(x)=2\right.$ and $\lim _{x \rightarrow 6^{-}} f(x)=2$).
(iii) f is not continuous at 6 because $\lim _{x \rightarrow 6} f(x) \neq f(6)$

