Math 180, Exam 1, Fall 2012
 Problem 1 Solution

1. Compute the derivatives of the following functions:
(a) $y=\frac{x}{1+x^{3}}$
(b) $y=\sin (\sqrt{x}+1)$
(c) $y=x \cdot \sqrt{\sin (x)+1}$

Solution:

(a) The derivative may be computed using the Quotient Rule.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\left(1+x^{3}\right)(x)^{\prime}-(x)\left(1+x^{3}\right)^{\prime}}{\left(1+x^{3}\right)^{2}} \\
& \frac{d y}{d x}=\frac{\left(1+x^{3}\right)(1)-(x)\left(3 x^{2}\right)}{\left(1+x^{3}\right)^{2}} \\
& \frac{d y}{d x}=\frac{1-2 x^{3}}{\left(1+x^{3}\right)^{2}}
\end{aligned}
$$

(b) The derivative calculation here requires the Chain Rule.

$$
\begin{aligned}
& \frac{d y}{d x}=\cos (\sqrt{x}+1) \frac{d}{d x}(\sqrt{x}+1) \\
& \frac{d y}{d x}=\cos (\sqrt{x}+1) \cdot \frac{1}{2 \sqrt{x}}
\end{aligned}
$$

(c) Both the Product and Chain Rules are necessary to compute this derivative.

$$
\begin{aligned}
& \frac{d y}{d x}=(x)(\sqrt{\sin (x)+1})^{\prime}+(x)^{\prime} \sqrt{\sin (x)+1} \\
& \frac{d y}{d x}=x \cdot \frac{1}{2 \sqrt{\sin (x)+1}} \cdot \frac{d}{d x}(\sin (x)+1)+1 \cdot \sqrt{\sin (x)+1} \\
& \frac{d y}{d x}=x \cdot \frac{1}{2 \sqrt{\sin (x)+1}} \cdot \cos (x)+\sqrt{\sin (x)+1}
\end{aligned}
$$

Math 180, Exam 1, Fall 2012
 Problem 2 Solution

2. Find the equation of the tangent line to $y=\sqrt{x+1}$ at $x=3$.

Solution: To find an equation for the tangent line we need a point on the line and the slope of the line. The point has an x-coordinate of 3 and a y-coordinate of

$$
y(3)=\sqrt{3+1}=2
$$

The slope of the tangent line is the value of the derivative $\frac{d y}{d x}$ at $x=3$.

$$
\left.\frac{d y}{d x}\right|_{x=3}=\left.\frac{1}{2 \sqrt{x+1}}\right|_{x=3}=\frac{1}{2 \sqrt{3+1}}=\frac{1}{4}
$$

Thus, the equation of the tangent line in point-slope form is

$$
y-2=\frac{1}{4}(x-3)
$$

Math 180, Exam 1, Fall 2012
 Problem 3 Solution

3. Evaluate the following limits, or show that they do not exist.
(a) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{2}-2 x+1}$
(b) $\lim _{x \rightarrow 2} \frac{\left|x^{2}-3\right|}{x^{2}-1}$
(c) $\lim _{x \rightarrow \infty} \frac{x+\sqrt{x^{2}+1}}{2 x-1}$

Solution:

(a) The limit has the indetermine form $\frac{0}{0}$, which is apparent upon substituting $x=1$ into the function. However, the numerator and denominator factor nicely enough to allow us to simplify the limit as follows:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{2}-2 x+1} & =\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{(x-1)^{2}} \\
& =\lim _{x \rightarrow 1} \frac{x+1}{x-1}
\end{aligned}
$$

The corresponding one-sided limits are

$$
\begin{aligned}
\lim _{x \rightarrow 1^{+}} \frac{x+1}{x-1} & =\infty \\
\lim _{x \rightarrow 1^{-}} \frac{x+1}{x-1} & =-\infty
\end{aligned}
$$

Since the one-sided limits are not the same, we say that the limit does not exist.
(b) The function is continuous at $x=2$. Therefore, we may evaluate the limit using substitution.

$$
\lim _{x \rightarrow 2} \frac{\left|x^{2}-3\right|}{x^{2}-1}=\frac{\left|2^{2}-3\right|}{2^{2}-1}=\frac{1}{3}
$$

(c) We multiply the numerator and denominator of the function by $\frac{1}{x}$ to obtain

$$
\lim _{x \rightarrow \infty} \frac{x+\sqrt{x^{2}+1}}{2 x-1} \cdot \frac{\frac{1}{x}}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{1+\sqrt{1+\frac{1}{x^{2}}}}{2-\frac{1}{x}}=\frac{1+\sqrt{1+0}}{2-0}=1
$$

Math 180, Exam 1, Fall 2012
 Problem 4 Solution

4. Consider the equation $x^{2}-\cos (\pi x)-1=0$.
(a) Use the Intermediate Value Theorem to show that it has a solution in the interval $[0,1]$.
(b) Find an interval of length $\frac{1}{2}$ that contains a solution of this equation.

Solution:

(a) Let $f(x)=x^{2}-\cos (\pi x)-1$. Since $f(0)=-2$ and $f(1)=1$ have opposite signs and f is continuous on $(0,1)$, by the Intermediate Value Theorem we know that there is at least one number c in $(0,1)$ such that $f(c)=0$.
(b) The interval $(0,1)$ has length 1. To find an interval of length $\frac{1}{2}$ that contains a solution to the equation, we evaluate f at the midpoint of $(0,1)$ and determine its sign. We have

$$
f\left(\frac{1}{2}\right)=-\frac{3}{4}
$$

which is negative. Thus, since $f(1)=1$ is positive we know that there is a solution on the interval $\left(\frac{1}{2}, 1\right)$. This interval has length $\frac{1}{2}$.

Math 180, Exam 1, Fall 2012
 Problem 5 Solution

5. Find the horizontal and vertical asymptotes (if they exist) for

$$
f(x)=\frac{x}{x^{2}-3 x+2}
$$

Solution:

- The line $x=c$ is a vertical asymptote of $f(x)$ if

$$
\lim _{x \rightarrow c^{+}} f(x)= \pm \infty \quad \text { or } \quad \lim _{x \rightarrow c^{-}} f(x)= \pm \infty
$$

Since the roots of the denominator of $f(x)=\frac{x}{(x-1)(x-2)}$ are 1 and 2, we know that f has infinite discontinuities there. That is,

$$
\lim _{x \rightarrow 1^{+}} \frac{x}{(x-1)(x-2)}=\frac{1}{(+\operatorname{SMALL})(-1)}=-\infty
$$

and

$$
\lim _{x \rightarrow 2^{+}} \frac{x}{(x-1)(x-2)}=\frac{2}{(1)(+ \text { SMALL })}=+\infty
$$

Thus, $x=1$ and $x=2$ are vertical asymptotes of f.

- The line $y=c$ is a horizontal asymptote of $f(x)$ if

$$
\lim _{x \rightarrow+\infty} f(x)=c \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=c
$$

Since

$$
\lim _{x \rightarrow \pm \infty} \frac{x}{x^{2}-3 x+2} \cdot \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}}=\lim _{x \rightarrow \pm \infty} \frac{\frac{1}{x}}{1-\frac{3}{x}+\frac{2}{x^{2}}}=\frac{0}{1-0+0}=0
$$

we know that $y=0$ is a horizontal asymptote of f.

Math 180, Exam 1, Fall 2012
 Problem 6 Solution

6. Use the definition of the derivative as a limit of a difference quotient to compute $f^{\prime}(3)$ for the function $f(x)=x^{2}+2 x-5$.

Solution: The derivative $f^{\prime}(3)$ may be computed as follows:

$$
\begin{aligned}
f^{\prime}(3) & =\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{x^{2}+2 x-5-10}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{x^{2}+2 x-15}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{(x-3)(x+5)}{x-3} \\
& =\lim _{x \rightarrow 3}(x+5) \\
& =3+5 \\
& =8
\end{aligned}
$$

