Math 180, Exam 1, Fall 2013
 Problem 1 Solution

1. Calculate each limit below.
(a) $\lim _{x \rightarrow 7}\left(\frac{14}{x^{2}-7 x}-\frac{2}{x-7}\right)$
(b) $\lim _{x \rightarrow \infty} \frac{19 x^{4}+2 x-1}{3 x^{4}+16 x^{2}+100}$

Solution:

(a) The least common denominator of the function is $x^{2}-7 x$. Thus, the function can be written as follows:

$$
f(x)=\frac{14}{x^{2}-7 x}-\frac{2}{x-7}=\frac{14}{x(x-7)}-\frac{2 x}{x(x-7)}=\frac{14-2 x}{x(x-5)}=\frac{-2(x-7)}{x(x-7)}=-\frac{2}{x}
$$

provided that $x \neq 7$. Therefore, the limit of $f(x)$ as $x \rightarrow 7$ is

$$
\lim _{x \rightarrow 7}\left(\frac{14}{x^{2}-7 x}-\frac{2}{x-7}\right)=\lim _{x \rightarrow 7}\left(-\frac{2}{x}\right)=-\frac{2}{7}
$$

(b) The function is rational and the degrees of the numerator and denominator are the same. Therefore, the limit of f as $x \rightarrow \infty$ is the ratio of the leading coefficients.

$$
\lim _{x \rightarrow \infty} \frac{19 x^{4}+2 x-1}{3 x^{4}+16 x^{2}+100}=\frac{19}{3} \text {. }
$$

Math 180, Exam 1, Fall 2013
 Problem 2 Solution

2. If $f(x)=\sqrt{3 x+1}$, calculate

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

Solution: It is easiest to calculate the limit by recognizing that, by definition,

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=f^{\prime}(x) .
$$

Given that $f(x)=\sqrt{2 x+1}$, we can use the Chain Rule:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x} \sqrt{3 x+1} \\
f^{\prime}(x) & =\frac{1}{2 \sqrt{3 x+1}} \cdot \frac{d}{d x}(3 x+1) \\
f^{\prime}(x) & =\frac{1}{2 \sqrt{3 x+1}} \cdot 3
\end{aligned}
$$

The other method which almost every student used was to set up and evaluate the limit directly. Here's the calculation:

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{3(x+h)+1}-\sqrt{3 x+1}}{h} \\
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{3 x+3 h+1}-\sqrt{3 x+1}}{h} \cdot \frac{\sqrt{3 x+3 h+1}+\sqrt{3 x+1}}{\sqrt{3 x+3 h+1}+\sqrt{3 x+1}} \\
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(3 x+3 h+1)-(3 x+1)}{h(\sqrt{3 x+3 h+1}+\sqrt{3 x+1})} \\
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{3 h}{h(\sqrt{3 x+3 h+1}+\sqrt{3 x+1})} \\
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{3}{\sqrt{3 x+3 h+1}+\sqrt{3 x+1}} \\
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\frac{3}{\sqrt{3 x+3(0)+1}+\sqrt{3 x+1})} \\
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\frac{3}{2 \sqrt{3 x+1}}
\end{aligned}
$$

Math 180, Exam 1, Fall 2013
 Problem 3 Solution

3.

(a) Let $y=e^{2 x} \cos (x)$. Find $y^{\prime \prime}$. You do not need to simplify your answers!
(b) Rewrite $\tan (x)$ in terms of $\sin (x)$ and $\cos (x)$ and use the quotient rule to show that $\frac{d}{d x} \tan (x)=$ $\sec ^{2}(x)$.
(c) Find $\frac{d}{d \theta} \cot \left(\sin \theta+3 \theta^{4}\right)$.

Solution:

(a) Using the Product and Chain Rules, the first derivative is

$$
\begin{aligned}
y^{\prime} & =e^{2 x} \cdot \frac{d}{d x} \cos (x)+\cos (x) \cdot \frac{d}{d x} e^{2 x} \\
y^{\prime} & =e^{2 x} \cdot(-\sin (x))+\cos (x) \cdot\left(2 e^{2 x}\right) \\
y^{\prime} & =-e^{2 x} \cdot \sin (x)+2 e^{2 x} \cdot \cos (x) \\
y^{\prime} & =e^{2 x} \cdot(-\sin (x)+2 \cos (x))
\end{aligned}
$$

Another application of the Product and Chain Rules yields the second derivative:

$$
\begin{aligned}
y^{\prime \prime} & =e^{2 x} \cdot \frac{d}{d x}(-\sin (x)+2 \cos (x))+(-\sin (x)+2 \cos (x)) \cdot \frac{d}{d x} e^{2 x} \\
y^{\prime} & =e^{2 x} \cdot(-\cos (x)-2 \sin (x))+(-\sin (x)+2 \cos (x)) \cdot\left(2 e^{2 x}\right) \\
y^{\prime} & =-e^{2 x} \cdot \cos (x)-2 e^{2 x} \cdot \sin (x)-2 e^{2 x} \cdot \sin (x)+4 e^{2 x} \cdot \cos (x) \\
y^{\prime} & =-2 e^{-x} \cos (x)
\end{aligned}
$$

(b) By definition,

$$
\tan (x)=\frac{\sin (x)}{\cos (x)}
$$

Using the Quotient Rule yields

$$
\begin{aligned}
\frac{d}{d x} \tan (x) & =\frac{d}{d x}\left(\frac{\sin (x)}{\cos (x)}\right) \\
\frac{d}{d x} \tan (x) & =\frac{\cos (x) \cdot \frac{d}{d x} \sin (x)-\sin (x) \cdot \frac{d}{d x} \cos (x)}{\cos ^{2}(x)} \\
\frac{d}{d x} \tan (x) & =\frac{\cos (x) \cdot \cos (x)-\sin (x) \cdot(-\sin (x))}{\cos ^{2}(x)} \\
\frac{d}{d x} \tan (x) & =\frac{\cos ^{2}(x)+\sin ^{2}(x)}{\cos ^{2}(x)} \\
\frac{d}{d x} \tan (x) & =\frac{1}{\cos ^{2}(x)} \\
\frac{d}{d x} \tan (x) & =\sec ^{2}(x)
\end{aligned}
$$

(c) Using the Chain Rule we have:

$$
\begin{aligned}
& \frac{d}{d \theta} \cot \left(\sin \theta+3 \theta^{4}\right)=-\csc ^{2}\left(\sin \theta+3 \theta^{4}\right) \cdot \frac{d}{d \theta}\left(\sin \theta+3 \theta^{4}\right) \\
& \frac{d}{d \theta} \cot \left(\sin \theta+3 \theta^{4}\right)=-\csc ^{2}\left(\sin \theta+3 \theta^{4}\right) \cdot\left(\cos \theta+12 \theta^{3}\right)
\end{aligned}
$$

Math 180, Exam 1, Fall 2013
 Problem 4 Solution

4. Let f be defined by

$$
f(x)= \begin{cases}x^{4}+(1+A) e^{x}, & \text { if } x<0 \\ -B, & \text { if } x=0 \\ \sin (x), & \text { if } x>0\end{cases}
$$

where A and B are constants. Find values for A and B such that f is continuous on $(-\infty, \infty)$ or state that no such constants exist. Justify your answer.

Solution: First, the function $x^{4}+(1+A) e^{x}$ is continuous on $x<0$ for any value A. Second, the function $\sin (x)$ is continuous on $x>0$.

We must ensure that f is continuous at $x=0$. That is, we must select A and B so that

$$
\lim _{x \rightarrow 0} f(x)=f(0)
$$

The limit exists when the one-sided limits are the same.

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{+}} \sin (x)=\sin (0)=0 \\
\lim _{x \rightarrow 0^{-}} f(x) & =\lim _{x \rightarrow 0^{-}}\left(x^{4}+(1+A) e^{x}\right)=0^{4}+(1+A) e^{0}=1+A
\end{aligned}
$$

These limits are the same when $A=-1$ and in both cases, the limit is 0 . Since $f(0)=-B$ we must then have $B=0$ for continuity at $x=0$.

Math 180, Exam 1, Fall 2013
 Problem 5 Solution

5. Assume the tangent line to the graph of f at $x=1$ is given by

$$
y=4 x+2 .
$$

(a) Find $f(1)$.
(b) Find $f^{\prime}(1)$.
(c) Now assume that a function g is defined by $g(x)=f\left(x^{3}\right)$. Find $g(1)$ and $g^{\prime}(1)$.

Solution:

(a) When $x=1$, the y-coordinate of the point on the tangent line is

$$
y=4(1)+2=6
$$

Since the line is tangent to the graph of f at $x=1$, we know that the point $(1,6)$ is common to both graphs. Thus, $f(1)=6$.
(b) The quantity $f^{\prime}(1)$ is the slope of the tangent line. Thus, $f^{\prime}(1)=4$.
(c) We know that $g(1)=f\left(1^{3}\right)=f(1)=6$ (see part (a)).

To obtain $g^{\prime}(1)$ we begin by writing an expression for $g^{\prime}(x)$ using the Chain Rule.

$$
g^{\prime}(x)=\frac{d}{d x} f\left(x^{3}\right)=f^{\prime}\left(x^{3}\right) \cdot \frac{d}{d x} x^{3}=f^{\prime}\left(x^{3}\right) \cdot 3 x^{2}
$$

When $x=1$ we have

$$
g^{\prime}(1)=f^{\prime}\left(1^{3}\right) \cdot 3(1)^{2}=f^{\prime}(1) \cdot 3=4 \cdot 3=12
$$

