Math 180, Exam 1, Practice Fall 2009
 Problem 1 Solution

1. Evaluate the following limits, or show they do not exist.
(a) $\lim _{x \rightarrow \pi} 2 \cos x$
(b) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x+2}$
(c) $\lim _{x \rightarrow 9} \frac{2-\sqrt{x-5}}{x-9}$

Solution:

(a) The function $f(x)=2 \cos x$ is continuous at $x=\pi$. In fact, $f(x)$ is continuous at all x in the interval $(-\infty, \infty)$. Therefore, we can evaluate the limit using substitution.

$$
\lim _{x \rightarrow \pi} 2 \cos x=2 \cos \pi=-2
$$

(b) The function $f(x)=\frac{x^{2}-4}{x+2}$ is continuous at $x=2$. In fact, $f(x)$ is continuous at all $x \neq-2$. Therefore, we can evaluate the limit using substitution.

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x+2}=\frac{2^{2}-4}{2+2}=0
$$

(c) When substituting $x=9$ into the function $f(x)=\frac{2-\sqrt{x-5}}{x-9}$ we find that

$$
\frac{2-\sqrt{x-5}}{x-9}=\frac{2-\sqrt{9-5}}{9-9}=\frac{0}{0}
$$

which is indeterminate. We can resolve the indeterminacy by multiplying $f(x)$ by the
"conjugate" of the numerator divided by itself.

$$
\begin{aligned}
\lim _{x \rightarrow 9} \frac{2-\sqrt{x-5}}{x-9} & =\lim _{x \rightarrow 9} \frac{2-\sqrt{x-5}}{x-9} \cdot \frac{2+\sqrt{x-5}}{2+\sqrt{x-5}} \\
& =\lim _{x \rightarrow 9} \frac{4-(x-5)}{(x-9)(2+\sqrt{x-5})} \\
& =\lim _{x \rightarrow 9} \frac{-(x-9)}{(x-9)(2+\sqrt{x-5})} \\
& =\lim _{x \rightarrow 9} \frac{-1}{2+\sqrt{x-5}} \\
& =\frac{-1}{2+\sqrt{9-5}} \\
& =-\frac{1}{4}
\end{aligned}
$$

We evaluated the limit above by substituting $x=9$ into the function $\frac{-1}{2+\sqrt{x-5}}$. This is possible because the function is continuous at $x=9$.

Math 180, Exam 1, Practice Fall 2009
 Problem 2 Solution

2. Determine the location and type (removable, jump, infinite, or other) of all discontinuities of the function $\frac{x^{2}-3 x+2}{x^{2}-1}$.

Solution: We start by factoring the numerator and denominator.

$$
\frac{x^{2}-3 x+2}{x^{2}-1}=\frac{(x-2)(x-1)}{(x+1)(x-1)}
$$

As $x \rightarrow-1^{+}$, we find that:

$$
\begin{aligned}
\lim _{x \rightarrow-1^{+}} \frac{x^{2}-3 x+2}{x^{2}-1} & =\lim _{x \rightarrow-1^{+}} \frac{(x-2)(x-1)}{(x+1)(x-1)} \\
& =\lim _{x \rightarrow-1^{+}} \frac{x-2}{x+1} \\
& =-\infty
\end{aligned}
$$

Therefore, $x=-1$ is an infinite discontinuity.
The limit at $x=1$ is:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{x^{2}-1} & =\lim _{x \rightarrow 1} \frac{(x-2)(x-1)}{(x+1)(x-1)} \\
& =\lim _{x \rightarrow 1} \frac{x-2}{x+1} \\
& =\frac{1-2}{1+1} \\
& =-\frac{1}{2}
\end{aligned}
$$

However, $f(1)$ does not exist. Using our textbook's definitions, $x=1$ cannot be categorized as a removable, jump, or infinite discontinuity. Therefore, $x=1$ falls under the "other" category.

Math 180, Exam 1, Practice Fall 2009 Problem 3 Solution

3. Find the equation of the tangent line to $y=x^{3}-2 x^{2}+2$ at $x=1$.

Solution: The derivative y^{\prime} is found using the Power Rule.

$$
y^{\prime}=\left(x^{3}-2 x^{2}+2\right)^{\prime}=3 x^{2}-4 x
$$

At $x=1$ the values of y and y^{\prime} are:

$$
\begin{aligned}
y(1) & =1^{3}-2(1)^{2}+2=1 \\
y^{\prime}(1) & =3(1)^{2}-4(1)=-1
\end{aligned}
$$

We now know that the point $(1,1)$ is on the tangent line and that the slope of the tangent line is -1 . Therefore, an equation for the tangent line in point-slope form is:

$$
y-1=-(x-1)
$$

Math 180, Exam 1, Practice Fall 2009 Problem 4 Solution

4. Determine the value of c so that the function

$$
f(x)= \begin{cases}3 c x+1 & \text { if } x<1 \\ 5 x^{2}+c & \text { if } x \geq 1\end{cases}
$$

is continuous on \mathbb{R}.
Solution: The functions $3 c x+1$ and $5 x^{2}+c$ are continuous for all x. In order for $f(x)$ to be continuous on \mathbb{R}, we must select c so that $f(x)$ is continuous at $x=1$. To do this, we must compute the one-sided limits at $x=1$.

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(3 c x+1)=3 c(1)+1=3 c+1 \\
& \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(5 x^{2}+c\right)=5(1)^{2}+c=5+c
\end{aligned}
$$

In order to have continuity at $x=1$, the one-sided limits must be equal there. Thus, we need:

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} f(x) & =\lim _{x \rightarrow 1+} f(x) \\
3 c+1 & =5+c \\
2 c & =4 \\
c & =2
\end{aligned}
$$

For this value of c we have $\lim _{x \rightarrow 1} f(x)=7$. Furthermore, we have $f(1)=5(1)^{2}+2=7$. Thus, since $\lim _{x \rightarrow 1} f(x)=f(1)$ we know that $f(x)$ is continuous at $x=1$.

Math 180, Exam 1, Practice Fall 2009
 Problem 5 Solution

5. Use the Intermediate Value Theorem in order to show that the equation

$$
x^{5}-x+1=0
$$

has at least one real solution.
Solution: Let $f(x)=x^{5}-x+1$. First we recognize that $f(x)$ is continuous everywhere because it is a polynomial. Next, we must find an interval $[a, b]$ such that $f(a)$ and $f(b)$ have opposite signs. Let's choose $a=-2$ and $b=-1$.

$$
\begin{aligned}
& f(-2)=(-2)^{5}-(-2)+1=-29 \\
& f(-1)=(-1)^{5}-(-1)+1=1
\end{aligned}
$$

Since $f(-2)<0$ and $f(-1)>0$, the Intermediate Value Theorem tells us that $f(c)=0$ for some c in the interval $[-2,-1]$.

Figure 1: Graph of $f(x)=x^{5}-x+1$ on the interval $[-2,-1]$.

Math 180, Exam 1, Practice Fall 2009 Problem 6 Solution

6. Use the $\delta-\varepsilon$ definition of the limit to prove that $\lim _{x \rightarrow 3} 3 x-1=8$.

Solution: To show that $\lim _{x \rightarrow 3} 3 x-1=8$ we must find a $\delta>0$ such that $|(3 x-1)-8|<\varepsilon$ whenever $|x-3|<\delta$ for a given $\varepsilon>0$.

Let's work with the inequality $|(3 x-1)-8|<\varepsilon$.

$$
\begin{aligned}
|(3 x-1)-8| & <\varepsilon \\
|3 x-9| & <\varepsilon \\
3|x-3| & <\varepsilon \\
|x-3| & <\frac{\varepsilon}{3}
\end{aligned}
$$

Therefore, we choose $\delta=\frac{\varepsilon}{3}$.

Math 180, Exam 1, Practice Fall 2009
 Problem 7 Solution

7. Let $f(x)=\frac{1}{x+1}$.
(a) Write the derivative, $f^{\prime}(3)$, as the limit of the difference quotient.
(b) Evaluate this limit to find $f^{\prime}(3)$.

Solution:

(a) There are two possible difference quotients we can use to evaluate $f^{\prime}(3)$. One is:

$$
f^{\prime}(3)=\lim _{h \rightarrow 0} \frac{f(h+3)-f(3)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{(h+3)+1}-\frac{1}{3+1}}{h} .
$$

The other is:

$$
f^{\prime}(3)=\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3}=\lim _{x \rightarrow 3} \frac{\frac{1}{x+1}-\frac{1}{3+1}}{x-3}
$$

(b) Evaluating the first limit above we have:

$$
\begin{aligned}
f^{\prime}(3) & =\lim _{h \rightarrow 0} \frac{\frac{1}{(h+3)+1}-\frac{1}{3+1}}{h} \cdot \frac{4(h+4)}{4(h+4)} \\
& =\lim _{h \rightarrow 0} \frac{4-(h+4)}{4 h(h+4)} \\
& =\lim _{h \rightarrow 0} \frac{-h}{4 h(h+4)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{4(h+4)} \\
& =\frac{-1}{4(0+4)} \\
& =-\frac{1}{16}
\end{aligned}
$$

Evaluating the second limit we have:

$$
\begin{aligned}
f^{\prime}(3) & =\lim _{x \rightarrow 3} \frac{\frac{1}{x+1}-\frac{1}{3+1}}{x-3} \cdot \frac{4(x+1)}{4(x+1)} \\
& =\lim _{x \rightarrow 3} \frac{4-(x+1)}{4(x+1)(x-3)} \\
& =\lim _{x \rightarrow 3} \frac{-(x-3)}{4(x+1)(x-3)} \\
& =\lim _{x \rightarrow 3} \frac{-1}{4(x+1)} \\
& =\frac{-1}{4(3+1)} \\
& =-\frac{1}{16}
\end{aligned}
$$

Math 180, Exam 1, Practice Fall 2009 Problem 8 Solution

8. Find the derivatives of the following functions using the basic rules. Leave your answers in an unsimplified form so that your method is obvious.
(a) $f(x)=x^{3}+x^{-1}-x^{1 / 3}$
(b) $g(x)=x^{3} e^{x}$
(c) $h(x)=\frac{3 x}{1+x^{2}}$

Solution:

(a) Use the Power Rule.

$$
f^{\prime}(x)=3 x^{2}-x^{-2}-\frac{1}{3} x^{-2 / 3}
$$

(b) Use the Product Rule.

$$
\begin{aligned}
g^{\prime}(x) & =x^{3}\left(e^{x}\right)^{\prime}+\left(x^{3}\right)^{\prime} e^{x} \\
& =x^{3} e^{x}+3 x^{2} e^{x}
\end{aligned}
$$

(c) Use the Quotient Rule.

$$
\begin{aligned}
h^{\prime}(x) & =\frac{\left(1+x^{2}\right)(3 x)^{\prime}-(3 x)\left(1+x^{2}\right)^{\prime}}{\left(1+x^{2}\right)^{2}} \\
& =\frac{3\left(1+x^{2}\right)-(3 x)(2 x)}{\left(1+x^{2}\right)^{2}}
\end{aligned}
$$

Math 180, Exam 1, Practice Fall 2009
 Problem 9 Solution

9. The table below shows values of the functions $f(x), g(x)$, and $h(x)$ for x near 0 . Based on the data is $h=f^{\prime}$ or is $h=g^{\prime}$? Explain your answer by citing some feature of the data.

x	-0.2	-0.1	0	0.1	0.2
$f(x)$	0.494	0.498	0.500	0.498	0.494
$g(x)$	0.460	0.480	0.500	0.519	0.539
$h(x)$	0.059	0.029	0	-0.029	-0.059

Solution: To estimate the derivative $f^{\prime}(0)$ we use the formula:

$$
f^{\prime}(x) \approx \frac{f(x)-f(2)}{x-2}
$$

Choosing $x=0.1$ we get the estimate:

$$
f^{\prime}(0) \approx \frac{f(0.1)-f(0)}{0.1-0}=\frac{0.498-0.500}{0.1}=-0.02
$$

Choosing $x=-0.1$ we get the estimate:

$$
f^{\prime}(0) \approx \frac{f(-0.1)-f(0)}{-0.1-0}=\frac{0.498-0.500}{-0.1}=0.02
$$

The average of these two estimates is:

$$
\text { average estimate of } f^{\prime}(0)=\frac{-0.02+0.02}{2}=0
$$

Noting that $h(0)=0$, it appears as though $h=f^{\prime}$.

To confirm, we estimate $g^{\prime}(0)$ using the same technique. We find that

$$
\begin{aligned}
& g^{\prime}(0) \approx \frac{g(0.1)-g(0)}{0.1-0}=\frac{0.519-0.500}{0.1}=0.19 \\
& g^{\prime}(0) \approx \frac{g(-0.1)-g(0)}{-0.1-0}=\frac{0.480-0.500}{-0.1}=0.2
\end{aligned}
$$

average estimate of $g^{\prime}(0)=\frac{0.19+0.20}{2}=0.195$
which is decidedly different from $h(0)=0$ in comparison.

Math 180, Exam 1, Practice Fall 2009
 Problem 10 Solution

10. Suppose that $f(2)=3, f^{\prime}(2)=-1, g(2)=5$, and $g^{\prime}(2)=-2$. Find the derivative of the product $f(x) g(x)$ at $x=2$.

Solution: Using the Product Rule we have:

$$
[f(x) g(x)]^{\prime}=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)
$$

At $x=2$, the value of the derivative $[f(x) g(x)]^{\prime}$ is:

$$
\begin{aligned}
{\left.[f(x) g(x)]^{\prime}\right|_{x=2} } & =f(2) g^{\prime}(2)+f^{\prime}(2) g(2) \\
& =(3)(-2)+(-1)(5) \\
& =-11
\end{aligned}
$$

