## Math 180, Exam 1, Spring 2009 <br> Problem 1 Solution

1. Evaluate the limits, if they exist:
(a) $\lim _{x \rightarrow 1} \frac{x+1}{x^{2}+1}$
(b) $\lim _{x \rightarrow 3} \frac{2 x^{2}-7 x+3}{3 x-x^{2}}$

## Solution:

(a) The function $f(x)=\frac{x+1}{x^{2}+1}$ is continuous at $x=1$. In fact, $f(x)$ is continuous at all $x$ in the interval $(-\infty, \infty)$. Therefore, we can evaluate the limit using substitution.

$$
\lim _{x \rightarrow 1} \frac{x+1}{x^{2}+1}=\frac{1+1}{1^{2}+1}=1
$$

(b) When substituting $x=3$ into the function $f(x)=\frac{2 x^{2}-7 x+3}{3 x-x^{2}}$ we find that

$$
\frac{2 x^{2}-7 x+3}{3 x-x^{2}}=\frac{2(3)^{2}-7(3)+3}{3(3)-3^{2}}=\frac{0}{0}
$$

which is indeterminate. We can resolve this indeterminacy by factoring.

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{2 x^{2}-7 x+3}{3 x-x^{2}} & =\lim _{x \rightarrow 3} \frac{(x-3)(2 x-1)}{-x(x-3)} \\
& =\lim _{x \rightarrow 3} \frac{2 x-1}{-x} \\
& =\frac{2(3)-1}{-3} \\
& =-\frac{5}{3}
\end{aligned}
$$

## Math 180, Exam 1, Spring 2009 <br> Problem 2 Solution

2. Use the Intermediate Value Theorem to show that the function

$$
f(x)=x e^{x-1}-\frac{1}{2}
$$

has a zero in the interval $[0,1]$.
Solution: First we recognize that $f(x)=x e^{x-1}-\frac{1}{2}$ is continuous on the interval [0, 1]. In fact, $f(x)$ is continuous everywhere. Next, we evaluate $f(x)$ at the endpoints of the interval.

$$
\begin{aligned}
& f(0)=0 \cdot e^{0-1}-\frac{1}{2}=-\frac{1}{2} \\
& f(1)=1 \cdot e^{1-1}-\frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

Since $f(0)<0$ and $f(1)>0$, the Intermediate Value Theorem tells us that $f(c)=0$ for some $c$ in the interval $[0,1]$.


Figure 1: Graph of $f(x)=x e^{x-1}-\frac{1}{2}$ on the interval $[0,1]$.

## Math 180, Exam 1, Spring 2009 <br> Problem 3 Solution

3. Compute the derivatives of the following functions.
(a) $f(x)=\frac{x^{2}-1}{x^{2}+1}$
(b) $f(x)=3 x^{5}-6 x^{-4 / 3}$
(c) $f(x)=(x-1) e^{x}$

## Solution:

(a) Use the Quotient Rule.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(x^{2}+1\right)\left(x^{2}-1\right)^{\prime}-\left(x^{2}-1\right)\left(x^{2}+1\right)^{\prime}}{\left(x^{2}+1\right)^{2}} \\
& =\frac{2 x\left(x^{2}+1\right)-2 x\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

(b) Use the Power Rule.

$$
f^{\prime}(x)=15 x^{4}+8 x^{-7 / 3}
$$

(c) Use the Product Rule.

$$
\begin{aligned}
f^{\prime}(x) & =(x-1)\left(e^{x}\right)^{\prime}+(x-1)^{\prime} e^{x} \\
& =(x-1) e^{x}+e^{x}
\end{aligned}
$$

## Math 180, Exam 1, Spring 2009 <br> Problem 4 Solution

4. Consider the function $f(x)=x^{2}-2 x$.
(a) Use the definition of the derivative as a limit of a difference quotient to compute $f^{\prime}(3)$.
(b) Write an equation for the line tangent to the graph of $f$ at $x=3$.

## Solution:

(a) There are two possible difference quotients we can use to evaluate $f^{\prime}(3)$. One is:

$$
f^{\prime}(3)=\lim _{h \rightarrow 0} \frac{f(h+3)-f(3)}{h}=\lim _{h \rightarrow 0} \frac{\left[(h+3)^{2}-2(h+3)\right]-\left[3^{2}-2(3)\right]}{h}
$$

The other is:

$$
f^{\prime}(3)=\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3}=\lim _{x \rightarrow 3} \frac{\left(x^{2}-2 x\right)-\left[3^{2}-2(3)\right]}{x-3}
$$

Evaluating the first limit above we have:

$$
\begin{aligned}
f^{\prime}(3) & =\lim _{h \rightarrow 0} \frac{\left[(h+3)^{2}-2(h+3)\right]-\left[3^{2}-2(3)\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{2}+6 h+9-2 h-6-3}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{2}+4 h}{h} \\
& =\lim _{h \rightarrow 0}(h+4) \\
& =0+4 \\
& =4
\end{aligned}
$$

(b) The slope of the tangent line is $f^{\prime}(3)=4$. At $x=3$ we have $f(3)=3^{2}-2(3)=3$ so $(3,3)$ is a point on the line. Therefore, an equation for the tangent line is:

$$
y-3=4(x-3)
$$

## Math 180, Exam 1, Spring 2009 <br> Problem 5 Solution

5. Consider the piecewise-defined function below:

$$
f(x)=\left\{\begin{aligned}
x^{2} & \text { if } x<1 \\
4-k x & \text { if } x \geq 1
\end{aligned}\right.
$$

(a) Find the value of $k$ for which $f(x)$ is continuous for all values of $x$. Justify your answer.
(b) For the value of $k$ you found in part (a), is $f(x)$ differentiable at $x=1$ ? Explain your answer.

## Solution:

(a) The functions $x^{2}$ and $4-k x$ are continuous for all $x$. In order for $f(x)$ to be continuous for all $x$, we must select $k$ so that $f(x)$ is continuous at $x=1$. To do this, we must compute the one-sided limits at $x=1$.

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} f(x) & =\lim _{x \rightarrow 1^{-}} x^{2}=1^{2}=1 \\
\lim _{x \rightarrow 1^{+}} f(x) & =\lim _{x \rightarrow 1^{+}}(4-k x)=4-k(1)=4-k
\end{aligned}
$$

In order to have continuity at $x=1$, the one-sided limits must be equal there. Thus, we need:

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} f(x) & =\lim _{x \rightarrow 1+} f(x) \\
1 & =4-k \\
k & =3
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow 1} f(x)=1$ for this value of $k$. Furthermore, we have $f(1)=4-3(1)=1$. Thus, since $\lim _{x \rightarrow 1} f(x)=f(1)$ we know that $f(x)$ is continuous at $x=1$.
(b) $f(x)$ is differentiable at $x=1$ if $f^{\prime}(x)$ is continuous there. The derivative $f^{\prime}(x)$ when $k=3$ is:

$$
f^{\prime}(x)=\left\{\begin{aligned}
2 x & \text { if } x<1 \\
-3 & \text { if } x>1
\end{aligned}\right.
$$

The one-sided limits of $f^{\prime}(x)$ at $x=1$ are:

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f^{\prime}(x)=\lim _{x \rightarrow 1^{-}} 2 x=2(1)=2 \\
& \lim _{x \rightarrow 1^{+}} f^{\prime}(x)=\lim _{x \rightarrow 1^{+}}-3=-3
\end{aligned}
$$

Therefore, since the one-sided limits are not equal at $x=1, f(x)$ is not differentiable there.

