Math 180, Exam 1, Spring 2010
 Problem 1 Solution

1. Evaluate the following limits, or show that they do not exist.
(a) $\lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3}$
(b) $\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{x^{3}-1}$
(c) $\lim _{x \rightarrow-1} \frac{|x+1|}{2 x+2}$

Solution:

(a) When substituting $x=9$ into the function $f(x)=\frac{x-9}{\sqrt{x}-3}$ we find that

$$
\frac{x-9}{\sqrt{x}-3}=\frac{9-9}{\sqrt{9}-3}=\frac{0}{0}
$$

which is indeterminate. We can resolve the indeterminacy by multiplying $f(x)$ by the "conjugate" of the denominator divided by itself.

$$
\begin{aligned}
\lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3} & =\lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3} \cdot \frac{\sqrt{x}+3}{\sqrt{x}+3} \\
& =\lim _{x \rightarrow 9} \frac{(x-9)(\sqrt{x}+3)}{x-9} \\
& =\lim _{x \rightarrow 9}(\sqrt{x}+3) \\
& =\sqrt{9}+3 \\
& =6
\end{aligned}
$$

(b) When substituting $x=1$ into the function $f(x)=\frac{x^{2}-3 x+2}{x^{3}-1}$ we find that

$$
\frac{x^{2}-3 x+2}{x^{3}-1}=\frac{1^{2}-3(1)+2}{1^{3}-1}=\frac{0}{0}
$$

which is indeterminate. We can resolve the indeterminacy by factoring.

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{x^{3}-1} & =\lim _{x \rightarrow 1} \frac{(x-1)(x-2)}{(x-1)\left(x^{2}+x+1\right)} \\
& =\lim _{x \rightarrow 1} \frac{x-2}{x^{2}+x+1} \\
& =\frac{1-2}{1^{2}+1+1} \\
& =-\frac{1}{3}
\end{aligned}
$$

(c) When substituting $x=-1$ into the function $f(x)=\frac{|x+1|}{2 x+2}$ we find that

$$
\frac{|x+1|}{2 x+2}=\frac{|-1+1|}{2(-1)+2}=\frac{0}{0}
$$

which is indeterminate. We can resolve the indeterminacy by writing the function as a piecewise-defined function.

$$
\begin{aligned}
f(x)=\frac{|x+1|}{2 x+2} & = \begin{cases}\frac{x+1}{2 x+2} & \text { if } x \geq-1 \\
\frac{-(x+1)}{2 x+2} & \text { if } x<-1\end{cases} \\
& = \begin{cases}\frac{x+1}{2(x+1)} & \text { if } x \geq-1 \\
\frac{-(x+1)}{2(x+1)} & \text { if } x<-1\end{cases} \\
& = \begin{cases}\frac{1}{2} & \text { if } x \geq-1 \\
\frac{-1}{2} & \text { if } x<-1\end{cases}
\end{aligned}
$$

In order for the limit to exist, the one-sided limits must be the same. However,

$$
\begin{aligned}
\lim _{x \rightarrow-1^{-}} f(x) & =\lim _{x \rightarrow-1^{-}}-\frac{1}{2}=-\frac{1}{2} \\
\lim _{x \rightarrow-1^{+}} f(x) & =\lim _{x \rightarrow-1^{+}} \frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

Therefore, the limit does not exist.

Math 180, Exam 1, Spring 2010
 Problem 2 Solution

2. Find the derivatives of the following functions using the basic rules. Leave your answers in an unsimplified form so that it is clear what method you used.
(a) $x^{2} \cos x$
(b) $\left(x^{2}-3 x+14\right)^{12}$
(c) $\frac{x^{2}+e^{x}}{x^{2}-e^{x}}$

Solution:

(a) Use the Product Rule.

$$
\begin{aligned}
\left(x^{2} \cos x\right)^{\prime} & =x^{2}(\cos x)^{\prime}+\left(x^{2}\right)^{\prime} \cos x \\
& =-x^{2} \sin x+2 x \cos x
\end{aligned}
$$

(b) Use the Chain Rule.

$$
\begin{aligned}
{\left[\left(x^{2}-3 x+14\right)^{12}\right]^{\prime} } & =12\left(x^{2}-3 x+14\right)^{11}\left(x^{2}-3 x+14\right)^{\prime} \\
& =12\left(x^{2}-3 x+14\right)^{11}(2 x-3)
\end{aligned}
$$

(c) Use the Quotient Rule.

$$
\begin{aligned}
\left(\frac{x^{2}+e^{x}}{x^{2}-e^{x}}\right)^{\prime} & =\frac{\left(x^{2}-e^{x}\right)\left(x^{2}+e^{x}\right)^{\prime}-\left(x^{2}+e^{x}\right)\left(x^{2}-e^{x}\right)^{\prime}}{\left(x^{2}-e^{x}\right)^{2}} \\
& =\frac{\left(x^{2}-e^{x}\right)\left(2 x+e^{x}\right)-\left(x^{2}+e^{x}\right)\left(2 x-e^{x}\right)}{\left(x^{2}-e^{x}\right)^{2}}
\end{aligned}
$$

Math 180, Exam 1, Spring 2010
 Problem 3 Solution

3. For the function $f(x)=\frac{1}{x}$ compute
(a) The average rate of change from $x=3$ to $x=5$.
(b) The instantaneous rate of change at $x=4$.

Solution:

(a) The average rate of change formula is:

$$
\text { average } \mathrm{ROC}=\frac{f(b)-f(a)}{b-a}
$$

Using $f(x)=\frac{1}{x}, b=5$, and $a=3$ we have:

$$
\text { average } \mathrm{ROC}=\frac{\frac{1}{5}-\frac{1}{3}}{5-3}=-\frac{1}{15}
$$

(b) The instantaneous rate of change at $x=4$ is $f^{\prime}(4)$. The derivative $f^{\prime}(x)$ is:

$$
f^{\prime}(x)=-\frac{1}{x^{2}}
$$

At $x=4$ we have:

$$
\text { instantaneous } \operatorname{ROC}=f^{\prime}(4)=-\frac{1}{4^{2}}=-\frac{1}{16}
$$

Math 180, Exam 1, Spring 2010
 Problem 4 Solution

4. Use the Intermediate Value Theorem in order to show that the equation

$$
x^{4}=2^{x}
$$

has at least one real solution.
Solution: Let $f(x)=x^{4}-2^{x}$. First we recognize that $f(x)$ is continuous everywhere. Next, we must find an interval $[a, b]$ such that $f(a)$ and $f(b)$ have opposite signs. Let's choose $a=-1$ and $b=0$.

$$
\begin{aligned}
f(-1) & =(-1)^{4}-2^{-1}=\frac{1}{2} \\
f(0) & =0^{4}-2^{0}=-1
\end{aligned}
$$

Since $f(-1)>0$ and $f(0)<0$, the Intermediate Value Theorem tells us that $f(c)=0$ for some c in the interval $[-1,0]$.

Figure 1: Graph of $f(x)=x^{4}-2^{x}$ on the interval $[-1,0]$.

Math 180, Exam 1, Spring 2010
 Problem 5 Solution

5. Find and classify the points of discontinuity of the function

$$
\frac{x^{2}+7 x+12}{x^{3}-9 x}
$$

Solution: We start by factoring the numerator and denominator.

$$
\frac{x^{2}+7 x+12}{x^{3}-9 x}=\frac{(x+4)(x+3)}{x(x-3)(x+3)}
$$

As $x \rightarrow 0^{+}$, we find that:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{x^{2}+7 x+12}{x^{3}-9 x} & =\lim _{x \rightarrow 0^{+}} \frac{(x+4)(x+3)}{x(x-3)(x+3)} \\
& =\lim _{x \rightarrow 0^{+}} \frac{x+4}{x(x-3)} \\
& =-\infty
\end{aligned}
$$

Therefore, $x=0$ is an infinite discontinuity.
As $x \rightarrow 3^{+}$, we find that:

$$
\begin{aligned}
\lim _{x \rightarrow 3^{+}} \frac{x^{2}+7 x+12}{x^{3}-9 x} & =\lim _{x \rightarrow 0^{+}} \frac{(x+4)(x+3)}{x(x-3)(x+3)} \\
& =\lim _{x \rightarrow 3^{+}} \frac{x+4}{x(x-3)} \\
& =\infty
\end{aligned}
$$

Therefore, $x=3$ is an infinite discontinuity.
The limit at $x=-3$ is:

$$
\begin{aligned}
\lim _{x \rightarrow-3} \frac{x^{2}+7 x+12}{x^{3}-9 x} & =\lim _{x \rightarrow-3} \frac{(x+4)(x+3)}{x(x-3)(x+3)} \\
& =\lim _{x \rightarrow-3} \frac{x+4}{x(x-3)} \\
& =\frac{-3+4}{(-3)(-3-3)} \\
& =\frac{1}{18}
\end{aligned}
$$

However, $f(-3)$ does not exist. Using our textbook's definitions, $x=-3$ cannot be categorized as a removable, jump, or infinite discontinuity. Therefore, $x=-3$ falls under the "other" category.

Math 180, Exam 1, Spring 2010
 Problem 6 Solution

6. Find all points where the tangent line to $y=x^{3}-6 x+12$ has slope -1 .

Solution: The derivative y^{\prime} is

$$
y^{\prime}=\left(x^{3}-6 x+12\right)^{\prime}=3 x^{2}-6
$$

To determine the points where the slope of the tangent line is -1 , we set the derivative equal to -1 and solve for x.

$$
\begin{aligned}
y^{\prime} & =-1 \\
3 x^{2}-6 & =-1 \\
3 x^{2} & =5 \\
x^{2} & =\frac{5}{3} \\
x & = \pm \sqrt{\frac{5}{3}}
\end{aligned}
$$

