Math 180, Exam 1, Spring 2011
 Problem 1 Solution

1. Evaluate the following limits, or show that they do not exist
(a) $\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x^{2}-4}$
(b) $\lim _{x \rightarrow 3} \frac{\left|x^{2}-9\right|}{x^{2}+9}$
(c) $\lim _{x \rightarrow 2} \frac{x-2}{\sqrt{x}-\sqrt{2}}$

Solution:

(a) Upon substituting $x=2$ we find that

$$
\frac{x^{2}+x-6}{x^{2}-4}=\frac{2^{2}+2-6}{2^{2}-4}=\frac{0}{0}
$$

which is indeterminate. To resolve the indeterminacy we factor the numerator and denominator, cancel terms, and evaluate the resulting limit.

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x^{2}-4} & =\lim _{x \rightarrow 2} \frac{(x+3)(x-2)}{(x+2)(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{x+3}{x+2} \\
& =\frac{2+3}{2+2} \\
& =\frac{5}{4}
\end{aligned}
$$

We were able to substitute $x=2$ after canceling the $x-2$ terms because the function $\frac{x+3}{x+2}$ is continuous at $x=2$.
(b) Upon substituting $x=3$ we find that:

$$
\lim _{x \rightarrow 3} \frac{\left|x^{2}-9\right|}{x^{2}+9}=\frac{\left|3^{2}-9\right|}{3^{2}+9}=\frac{0}{18}=0
$$

The substitution method works here because the function $\frac{\left|x^{2}-9\right|}{x^{2}+9}$ is continuous everywhere.
(c) Upon substituting $x=2$ we find that

$$
\frac{x-2}{\sqrt{x}-\sqrt{2}}=\frac{2-2}{\sqrt{2}-\sqrt{2}}=\frac{0}{0}
$$

which is indeterminate. To resolve the indeterminacy we multiply the numerator and denominator by $\sqrt{x}+\sqrt{2}$, cancel terms, and evaluate the resulting limit.

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x-2}{\sqrt{x}-\sqrt{2}} & =\lim _{x \rightarrow 2} \frac{x-2}{\sqrt{x}-\sqrt{2}} \cdot \frac{\sqrt{x}+\sqrt{2}}{\sqrt{x}+\sqrt{2}} \\
& =\lim _{x \rightarrow 2} \frac{(x-2)(\sqrt{x}+\sqrt{2})}{x-2} \\
& =\lim _{x \rightarrow 2}(\sqrt{x}+\sqrt{2}) \\
& =\sqrt{2}+\sqrt{2} \\
& =2 \sqrt{2}
\end{aligned}
$$

We were able to substitute $x=2$ after canceling the $x-2$ terms because the function $\sqrt{x}+\sqrt{2}$ is continuous at $x=2$.

Math 180, Exam 1, Spring 2011
 Problem 2 Solution

2. Consider the equation $x^{3}+x+1=0$.
(a) Use the Intermediate Value Theorem to show that it has a solution in the interval $[-2,0]$.
(b) Use the Bisection Method to find an interval of length $\frac{1}{2}$ that contains a solution.

Solution: Let $f(x)=x^{3}+x+1$.
(a) Since $f(x)$ is a polynomial, we know that it is continuous everywhere. Furthermore, $f(0)=1$ and $f(-2)=-9$ have opposite signs. Therefore, the Intermediate Value Theorem guarantees the existence of a zero of $f(x)$ on the interval $[-2,0]$.
(b) The midpoint of $[-2,0]$ is $x=-1$. Since $f(-1)=-1$ and $f(0)=1$ have opposite signs, we know that a zero of $f(x)$ exists in the interval $[-1,0]$.

The midpoint of $[-1,0]$ is $x=-\frac{1}{2}$. Since $f\left(-\frac{1}{2}\right)=\frac{3}{8}$ and $f(-1)=-1$ have opposite signs, we know that a zero of $f(x)$ exists in the interval $\left[-1,-\frac{1}{2}\right]$. This interval has a length of $\frac{1}{2}$ so we're done.

Math 180, Exam 1, Spring 2011
 Problem 3 Solution

3. Let $f(x)=x^{2}-2 x-2$.
(a) Use the definition of the derivative as a limit of difference quotients to compute $f^{\prime}(3)$.
(b) Find an equation of the tangent line to the graph of f at the point $(3,1)$.

Solution:

(a) Using the limit definition of the derivative, we can compute $f^{\prime}(3)$ using either of the following formulas:

$$
f^{\prime}(3)=\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3}=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}
$$

Using the first formula, we get:

$$
\begin{aligned}
f^{\prime}(3) & =\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{\left(x^{2}-2 x-2\right)-\left(3^{2}-2(3)-2\right)}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{(x+1)(x-3)}{x-3} \\
& =\lim _{x \rightarrow 3}(x+1) \\
& =3+1 \\
& =4
\end{aligned}
$$

(b) Using the fact that $f^{\prime}(3)=4$ is the slope of the tangent line at the point $(3,1)$, an equation for the tangent line in point-slope form is:

$$
y-1=4(x-3)
$$

Math 180, Exam 1, Spring 2011
 Problem 4 Solution

4. Let $f(x)=\frac{1}{1-x}+3$.
(a) Find the average rate of change of the function between $x=-0.6$ and $x=-0.4$.
(b) Find the instantaneous rate of change at $x=-0.5$.

Solution:

(a) The average rate of change of $f(x)$ on the interval $[-0.6,-0.4]$ is:

$$
\begin{aligned}
\text { average } \mathrm{ROC} & =\frac{f(-0.4)-f(-0.6)}{-0.4-(-0.6)} \\
& =\frac{\left(\frac{1}{1-(-0.4)}+3\right)-\left(\frac{1}{1-(-0.6)}+3\right)}{-0.4-(-0.6)} \\
& =\frac{\frac{1}{1.4}-\frac{1}{1.6}}{0.2} \\
& =\frac{25}{56}
\end{aligned}
$$

(b) The instantaneous rate of change at $x=-0.5$ is $f^{\prime}(-0.5)$. The derivative $f^{\prime}(x)$ is found using the Chain Rule.

$$
\begin{aligned}
f^{\prime}(x) & =\left(\frac{1}{1-x}+3\right)^{\prime} \\
& =-(1-x)^{-2} \cdot(1-x)^{\prime}+3^{\prime} \\
& =\frac{1}{(1-x)^{2}}
\end{aligned}
$$

At $x=-0.5$, we have:

$$
f^{\prime}(-0.5)=\frac{1}{(1-(-0.5))^{2}}=\frac{4}{9}
$$

Math 180, Exam 1, Spring 2011
 Problem 5 Solution

5. Find the derivatives of the following functions using the basic rules. Leave your answers in an unsimplified form so that it is clear what method you used.
(a) $f(x)=\sin \left(x^{3}\right)$
(b) $f(x)=x^{2} \cdot \arctan (3 x)$
(c) $f(x)=\frac{1-\cos x}{x^{2}+1}$
(d) $f(x)=x^{3} e^{-x}$.

Solution:

(a) Use the Chain Rule.

$$
\begin{aligned}
f^{\prime}(x) & =\left[\sin \left(x^{3}\right)\right]^{\prime} \\
& =\cos \left(x^{3}\right) \cdot\left(x^{3}\right)^{\prime} \\
& =\cos \left(x^{3}\right) \cdot 3 x^{2}
\end{aligned}
$$

(b) Use the Product and Chain Rules.

$$
\begin{aligned}
f^{\prime}(x) & =\left[x^{2} \cdot \arctan (3 x)\right]^{\prime} \\
& =x^{2} \cdot[\arctan (3 x)]^{\prime}+\left(x^{2}\right)^{\prime} \cdot \arctan (3 x) \\
& =x^{2} \cdot \frac{1}{1+(3 x)^{2}} \cdot(3 x)^{\prime}+2 x \cdot \arctan (3 x) \\
& =x^{2} \cdot \frac{1}{1+(3 x)^{2}} \cdot 3+2 x \cdot \arctan (3 x)
\end{aligned}
$$

(c) Use the Quotient Rule.

$$
\begin{aligned}
f^{\prime}(x) & =\left(\frac{1-\cos x}{x^{2}+1}\right)^{\prime} \\
& =\frac{\left(x^{2}+1\right)(1-\cos x)^{\prime}-(1-\cos x)\left(x^{2}+1\right)^{\prime}}{\left(x^{2}+1\right)^{2}} \\
& =\frac{\left(x^{2}+1\right)(\sin x)-(1-\cos x)(2 x)}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

(d) Use the Product and Chain Rules.

$$
\begin{aligned}
f^{\prime}(x) & =\left(x^{3} e^{-x}\right)^{\prime} \\
& =x^{3}\left(e^{-x}\right)^{\prime}+e^{-x}\left(x^{3}\right)^{\prime} \\
& =x^{3}\left(-e^{-x}\right)+e^{-x}\left(3 x^{2}\right)
\end{aligned}
$$

Math 180, Exam 1, Spring 2011
 Problem 6 Solution

6. Find the value/s of c for which the function

$$
f(x)= \begin{cases}x^{2}+3 & \text { if } x<2 \\ c x-1 & \text { if } x \geq 2\end{cases}
$$

is continuous at $x=2$. Justify your answers.
Solution: $f(x)$ will be continuous at $x=2$ if

$$
\lim _{x \rightarrow 2} f(x)=f(2)
$$

To determine the limit, we must consider the one-sided limits as $x \rightarrow 2$. The limit as $x \rightarrow 2^{-}$ is

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} f(x) & =\lim _{x \rightarrow 2^{-}}\left(x^{2}+3\right) \\
& =2^{2}+3 \\
& =7
\end{aligned}
$$

The limit as $x \rightarrow 2^{+}$is

$$
\begin{aligned}
\lim _{x \rightarrow 2^{+}} f(x) & =\lim _{x \rightarrow 2^{+}}(c x-1) \\
& =c(2)-1 \\
& =2 c-1
\end{aligned}
$$

In order for the limit to exist, the one-sided limits must be the same. So we must have:

$$
\begin{aligned}
\lim _{x \rightarrow 2^{+}} f(x) & =\lim _{x \rightarrow 2^{-}} f(x) \\
2 c-1 & =7 \\
c & =4
\end{aligned}
$$

Thus, when $c=4$ the one-sided limits are the same and both are equal to 7 . Furthermore, when $c=4$ we know that $f(2)=4(2)-1=7$, so the function is continuous at $x=2$ when $c=4$.

