Math 180, Exam 1, Spring 2014
 Problem 1 Solution

1. Find $\lim _{\theta \rightarrow 0} \frac{\tan \theta}{\theta}$.

Solution: The limit is indeterminate because, upon substituting $\theta=0$, the function value tends toward $0 / 0$. This indeterminacy may be resolved by rewriting $\tan \theta$ as $\sin \theta / \cos \theta$ to yield

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \frac{\tan \theta}{\theta}=\lim _{\theta \rightarrow 0} \frac{\sin \theta / \cos \theta}{\theta} \\
& \lim _{\theta \rightarrow 0} \frac{\tan \theta}{\theta}=\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta} \cdot \frac{1}{\cos \theta} \\
& \lim _{\theta \rightarrow 0} \frac{\tan \theta}{\theta}=\left(\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}\right)\left(\lim _{\theta \rightarrow 0} \frac{1}{\cos \theta}\right) \\
& \lim _{\theta \rightarrow 0} \frac{\tan \theta}{\theta}=1 \cdot \frac{1}{\cos 0} \\
& \lim _{\theta \rightarrow 0} \frac{\tan \theta}{\theta}=1
\end{aligned}
$$

If we let $x=2 \theta$, then the limit becomes

$$
\lim _{\theta \rightarrow 0} \frac{\sin (2 \theta)}{\theta}=2 \cdot \lim _{x \rightarrow 0} \frac{\sin (x)}{x}=2 \cdot 1=2
$$

Math 180, Exam 1, Spring 2014
 Problem 2 Solution

2. Use the Squeeze Theorem to find $\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x^{3}}\right)$.

Solution: Using the fact that $-1 \leq \cos \theta \leq 1$ for all θ we have the following inequalities:

$$
\begin{aligned}
-1 & \leq \cos \theta \leq 1 \\
-1 & \leq \cos \left(\frac{1}{x^{3}}\right) \leq 1 \\
-x^{2} & \leq x^{2} \cos \left(\frac{1}{x^{3}}\right) \leq x^{2}
\end{aligned}
$$

for all $x \neq 0$. Since $\lim _{x \rightarrow 0}\left(-x^{2}\right)=\lim _{x \rightarrow 0} x^{2}=0$ we have, by the Squeeze Theorem,

$$
\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x^{3}}\right)=0
$$

Math 180, Exam 1, Spring 2014
 Problem 3 Solution

3. Find all horizontal and vertical asymptotes of $f(x)=\frac{x^{2}+3 x-4}{x^{2}-2 x+1}$. Justify your answers using calculus.

Solution: The function may be rewritten as follows:

$$
f(x)=\frac{x^{2}+3 x-4}{x^{2}-2 x+1}=\frac{(x-1)(x+4)}{(x-1)(x-1)}
$$

- $x=1$ is a vertical asymptote of f because

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{(x-1)(x+4)}{(x-1)(x-1)} \lim _{x \rightarrow 1^{+}} \frac{x+4}{x-1}=+\infty
$$

- $y=1$ is a horizontal asymptote of f because

$$
\lim _{x \rightarrow \pm \infty} f(x)=\lim _{x \rightarrow \pm \infty} \frac{x^{2}+3 x-4}{x^{2}-2 x+1}=\frac{1}{1}=1
$$

where the ratio $1 / 1$ represents the ratio of the leading coefficients of the numerator and denominator, i.e. the coefficients of x.

Math 180, Exam 1, Spring 2014 Problem 4 Solution

4. Differentiate $\frac{e^{-3 x}}{5-x^{2}}$. Do not simplify your derivative.

Solution: Using the Quotient and Chain Rules, we have:

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{e^{-3 x}}{5-x^{2}}\right) & =\frac{\left(5-x^{2}\right) \frac{d}{d x} e^{-3 x}-e^{-3 x} \frac{d}{d x}\left(5-x^{2}\right)}{\left(5-x^{2}\right)^{2}} \\
\frac{d}{d x}\left(\frac{e^{-3 x}}{5-x^{2}}\right) & =\frac{\left(5-x^{2}\right) \cdot\left(-3 e^{-3 x}\right)-e^{-3 x} \cdot(-2 x)}{\left(5-x^{2}\right)^{2}}
\end{aligned}
$$

Math 180, Exam 1, Spring 2014
 Problem 5 Solution

5. Differentiate $e^{3 t} \sqrt{\cot (2 t)}$. Do not simplify your answer.

Solution: Using the Product and Chain Rules, we have:

$$
\begin{aligned}
& \frac{d}{d t} e^{3 t} \sqrt{\cot (2 t)}=e^{3 t} \frac{d}{d t} \sqrt{\cot (2 t)}+\sqrt{\cot (2 t)} \frac{d}{d t} e^{3 t} \\
& \frac{d}{d t} e^{3 t} \sqrt{\cot (2 t)}=e^{3 t} \cdot \frac{1}{2 \sqrt{\cot (2 t)}} \cdot \frac{d}{d t} \cot (2 t)+\sqrt{\cot (2 t)} \cdot\left(3 e^{3 t}\right) \\
& \frac{d}{d t} e^{3 t} \sqrt{\cot (2 t)}=e^{3 t} \cdot \frac{1}{2 \sqrt{\cot (2 t)}} \cdot\left(-\csc ^{2}(2 t)\right) \cdot \frac{d}{d t}(2 t)+\sqrt{\cot (2 t)} \cdot\left(3 e^{3 t}\right) \\
& \frac{d}{d t} e^{3 t} \sqrt{\cot (2 t)}=e^{3 t} \cdot \frac{1}{2 \sqrt{\cot (2 t)}} \cdot\left(-\csc ^{2}(2 t)\right) \cdot 2+\sqrt{\cot (2 t)} \cdot\left(3 e^{3 t}\right)
\end{aligned}
$$

Math 180, Exam 1, Spring 2014
 Problem 6 Solution

6. (a) Write the definition of the derivative of $f(x)$ as the limit of a difference quotient.
(b) Using the definition you wrote in part (a), find $f^{\prime}(x)$ if $f(x)=\sqrt{x+1}$.

Solution: (a) The derivative of $f(x)$ is defined as:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

(b) Using the above definition we have:

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sqrt{(x+h)+1}-\sqrt{x+1}}{h} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sqrt{(x+h)+1}-\sqrt{x+1}}{h} \cdot \frac{\sqrt{(x+h)+1}+\sqrt{x+1}}{\sqrt{(x+h)+1}+\sqrt{x+1}} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{((x+h)+1)-(x+1)}{h(\sqrt{(x+h)+1}+\sqrt{x+1})} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{(x+h)+1}+\sqrt{x+1})} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{1}{\sqrt{(x+h)+1}+\sqrt{x+1}} \\
& f^{\prime}(x)=\frac{1}{\sqrt{(x+0)+1}+\sqrt{x+1}} \\
& f^{\prime}(x)=\frac{1}{2 \sqrt{x+1}}
\end{aligned}
$$

Math 180, Exam 1, Spring 2014
 Problem 7 Solution

7. The following picture shows two functions, y_{1} (solid curve) and y_{2} (dashed curve). One of the functions is the derivative of the other. Determine which function is the derivative of the other and give three examples/reasons why your choice is correct.

Solution: $y_{2}=y_{1}^{\prime}$
(1) $y_{2}(0)=y_{1}^{\prime}(0)=0$
(2) $y_{2}>0$ and $y_{1}^{\prime}>0$ for $x<0$
(3) $y_{2}<0$ and $y_{1}^{\prime}<0$ for $x>0$

Math 180, Exam 1, Spring 2014 Problem 8 Solution

8. On the axes provided, sketch a possible graph for f with the following information.
(1) $f(0)=-1$
(2) $\lim _{x \rightarrow 2^{-}} f(x)=-\infty$
(3) $\lim _{x \rightarrow 2^{+}} f(x)=+\infty$
(4) $\lim _{x \rightarrow-\infty} f(x)=0$
(5) $\lim _{x \rightarrow+\infty} f(x)=2$

