Math 180, Exam 1, Study Guide Problem 1 Solution

1. What is the slope of the linear function $f(x)$ whose graph goes through the points $(1,2)$ and $(4,4)$? What is the value of $f(7)$?

Solution: The slope of the line that goes through the points $(1,2)$ and $(4,4)$ is:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-2}{4-1}=\frac{2}{3}
$$

Using the slope above and the point $(1,2)$, we write an equation for the line as follows:

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =\frac{2}{3}(x-1) \\
y-2 & =\frac{2}{3} x-\frac{2}{3} \\
y & =\frac{2}{3} x+\frac{4}{3}
\end{aligned}
$$

Therefore, the linear function is $f(x)=\frac{2}{3} x+\frac{4}{3}$. The value of $f(7)$ is:

$$
f(7)=\frac{2}{3}(7)+\frac{4}{3}=6
$$

Math 180, Exam 1, Study Guide Problem 2 Solution

2. Find $\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{x^{2}-x-2}$.

Solution: When substituting $x=2$ into the function $f(x)=\frac{x^{2}-3 x+2}{x^{2}-x-2}$ we find that

$$
\frac{x^{2}-3 x+2}{x^{2}-x-2}=\frac{2^{2}-3(2)+2}{2^{2}-2-2}=\frac{0}{0}
$$

which is indeterminate. We can resolve the indeterminacy by factoring.

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{x^{2}-x-2} & =\lim _{x \rightarrow 2} \frac{(x-1)(x-2)}{(x+1)(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{x-1}{x+1} \\
& =\frac{2-1}{2+1} \\
& =\frac{1}{3}
\end{aligned}
$$

Math 180, Exam 1, Study Guide Problem 3 Solution

3. The graph of function $f(x)$ is below. At what point or points is $f(x)$ not continuous?

Solution: The function is not continuous at $x=4$ because the one-sided limits

$$
\lim _{x \rightarrow 4^{-}} f(x)=1, \quad \lim _{x \rightarrow 4^{+}} f(x)=2
$$

are not equal to each other.

Math 180, Exam 1, Study Guide
 Problem 4 Solution

4. Find the derivatives of the following functions using the basic rules. Do not simplify your answer.
(a) $x^{3}+x^{1 / 3}$,
(b) $x^{2} e^{x}$,
(c) $\frac{2+x}{3+x^{2}}$

Solution:

(a) Use the Power Rule.

$$
\left(x^{3}+x^{1 / 3}\right)^{\prime}=3 x^{2}+\frac{1}{3} x^{-2 / 3}
$$

(b) Use the Product Rule.

$$
\begin{aligned}
\left(x^{2} e^{x}\right)^{\prime} & =x^{2}\left(e^{x}\right)^{\prime}+\left(x^{2}\right)^{\prime} e^{x} \\
& =x^{2} e^{x}+2 x e^{x}
\end{aligned}
$$

(c) Use the Quotient Rule.

$$
\begin{aligned}
\left(\frac{2+x}{3+x^{2}}\right)^{\prime} & =\frac{\left(3+x^{2}\right)(2+x)^{\prime}-(2+x)\left(3+x^{2}\right)^{\prime}}{\left(3+x^{2}\right)^{2}} \\
& =\frac{\left(3+x^{2}\right)-(2+x)(2 x)}{\left(3+x^{2}\right)^{2}}
\end{aligned}
$$

Math 180, Exam 1, Study Guide Problem 5 Solution

5. Find the derivatives of the following functions using the basic rules. Do not simplify your answer.
(a) $1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}$,
(b) $(x-1) e^{x}$,
(c) $\frac{1}{\sqrt{x}-1}$

Solution:

(a) Use the Power Rule.

$$
\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}\right)^{\prime}=1+x+\frac{1}{2} x^{2}
$$

(b) Use the Product Rule.

$$
\begin{aligned}
{\left[(x-1) e^{x}\right]^{\prime} } & =(x-1)\left(e^{x}\right)^{\prime}+(x-1)^{\prime} e^{x} \\
& =(x-1) e^{x}+e^{x}
\end{aligned}
$$

(c) Use the Quotient Rule.

$$
\begin{aligned}
\left(\frac{1}{\sqrt{x}-1}\right)^{\prime} & =\frac{(\sqrt{x}-1)(1)^{\prime}-(1)(\sqrt{x}-1)^{\prime}}{(\sqrt{x}-1)^{2}} \\
& =\frac{0-\frac{1}{2 \sqrt{x}}}{(\sqrt{x}-1)^{2}}
\end{aligned}
$$

Math 180, Exam 1, Study Guide Problem 6 Solution

6. Find the equation of the tangent line to $y=f(x)$ at $x=2$ for the function $f(x)=-x^{2}+7 x$. Do not simplify your answer.

Solution: The derivative $f^{\prime}(x)$ is found using the Power Rule.

$$
f^{\prime}(x)=\left(-x^{2}+7 x\right)^{\prime}=-2 x+7
$$

At $x=2$ the values of f and f^{\prime} are:

$$
\begin{aligned}
f(2) & =-2^{2}+7(2)=10 \\
f^{\prime}(2) & =-2(2)+7=3
\end{aligned}
$$

We now know that the point $(2,10)$ is on the tangent line and that the slope of the tangent line is 3 . Therefore, an equation for the tangent line in point-slope form is:

$$
y-10=3(x-2)
$$

Math 180, Exam 1, Study Guide Problem 7 Solution

7. Let $f(x)=x^{2}+3$.
(a) Find the average rate of change of $f(x)$ over the interval $1 \leq x \leq 3$.
(b) Find the instantaneous rate of change of $f(x)$ at $x=2$.

Solution:

(a) The average rate of change formula is:

$$
\text { average } \mathrm{ROC}=\frac{f(b)-f(a)}{b-a}
$$

Using $f(x)=x^{2}+3, b=3$, and $a=1$ we have:

$$
\text { average } \mathrm{ROC}=\frac{\left(3^{2}+3\right)-\left(1^{2}+3\right)}{3-1}=4
$$

(b) The instantaneous rate of change at $x=2$ is $f^{\prime}(2)$. The derivative $f^{\prime}(x)$ is:

$$
f^{\prime}(x)=2 x
$$

At $x=2$ we have:

$$
\text { instantaneous } \mathrm{ROC}=f^{\prime}(2)=2(2)=4
$$

Math 180, Exam 1, Study Guide Problem 8 Solution

8. Let $f(x)=x^{2}$. Use the definition of the derivative as the limit of the difference quotient to find $f^{\prime}(3)$.

Solution: There are two possible difference quotients we can use to evaluate $f^{\prime}(3)$. One is:

$$
f^{\prime}(3)=\lim _{h \rightarrow 0} \frac{f(h+3)-f(3)}{h}=\lim _{h \rightarrow 0} \frac{(h+3)^{2}-3^{2}}{h} .
$$

The other is:

$$
f^{\prime}(3)=\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3}=\lim _{x \rightarrow 3} \frac{x^{2}-3^{2}}{x-3}
$$

Evaluating the first limit above we have:

$$
\begin{aligned}
f^{\prime}(3) & =\lim _{h \rightarrow 0} \frac{(h+3)^{2}-3^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{2}+6 h+9-9}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{2}+6 h}{h} \\
& =\lim _{h \rightarrow 0}(h+6) \\
& =0+6 \\
& =6
\end{aligned}
$$

Evaluating the second limit we have:

$$
\begin{aligned}
f^{\prime}(3) & =\lim _{x \rightarrow 3} \frac{x^{2}-3^{2}}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{(x+3)(x-3)}{x-3} \\
& =\lim _{x \rightarrow 3}(x+3) \\
& =3+3 \\
& =6
\end{aligned}
$$

Math 180, Exam 1, Study Guide Problem 9 Solution

9. Use the table below, which shows values of $f(x)$ for x near 2 ,

$$
\begin{array}{cccccc}
x & 1.8 & 1.9 & 2.0 & 2.1 & 2.2 \\
f(x) & 2.24 & 2.27 & 2.30 & 2.33 & 2.37
\end{array}
$$

to find the slope of a secant line that is an estimate for $f^{\prime}(2)$.
Solution: An approximate value for $f^{\prime}(2)$ is

$$
f^{\prime}(2) \approx \frac{f(2.1)-f(2.0)}{2.1-2.0}=\frac{2.33-2.30}{0.1}=0.3
$$

Math 180, Exam 1, Study Guide
 Problem 10 Solution

10. Find $\lim _{x \rightarrow 1} \frac{\sqrt{3 x+1}-\sqrt{2 x+2}}{x-1}$.

Solution: When substituting $x=1$ into the function $f(x)=\frac{\sqrt{3 x+1}-\sqrt{2 x+1}}{x-1}$, we find that

$$
\frac{\sqrt{3 x+1}-\sqrt{2 x+2}}{x-1}=\frac{\sqrt{3(1)+1}-\sqrt{2(1)+2}}{1-1}=\frac{0}{0}
$$

which is indeterminate. We can resolve the indeterminacy by multiplying $f(x)$ by the "conjugate" of the numerator divided by itself.

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{\sqrt{3 x+1}-\sqrt{2 x+2}}{x-1} & =\lim _{x \rightarrow 1} \frac{\sqrt{3 x+1}-\sqrt{2 x+1}}{x-1} \cdot \frac{\sqrt{3 x+1}+\sqrt{2 x+2}}{\sqrt{3 x+1}+\sqrt{2 x+2}} \\
& =\lim _{x \rightarrow 1} \frac{(3 x+1)-(2 x+2)}{(x-1)(\sqrt{3 x+1}+\sqrt{2 x+2})} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)}{(x-1)(\sqrt{3 x+1}+\sqrt{2 x+2})} \\
& =\lim _{x \rightarrow 1} \frac{1}{\sqrt{3 x+1}+\sqrt{2 x+2}} \\
& =\frac{1}{\sqrt{3(1)+1}+\sqrt{2(2)+2}} \\
& =\frac{1}{4}
\end{aligned}
$$

We evaluated the limit above by substituting $x=1$ into the function $\frac{1}{\sqrt{3 x+1}+\sqrt{2 x+2}}$. This is possible because the function is continuous at $x=1$. In fact, the function is continuous at all $x \geq-\frac{1}{3}$.

