Math 180, Exam 2, Fall 2008 Problem 1 Solution

1. Find the derivatives of the following functions, do simplify.
(a) $\ln \left(x^{2}+x+1\right)$,
(b) $\cos (\sqrt{x})$,
(c) $\arctan (x)$

Solution:

(a) Use the Chain Rule.

$$
\begin{aligned}
{\left[\ln \left(x^{2}+x+1\right)\right]^{\prime} } & =\frac{1}{x^{2}+x+1} \cdot\left(x^{2}+x+1\right)^{\prime} \\
& =\frac{1}{x^{2}+x+1} \cdot(2 x+1)
\end{aligned}
$$

(b) Use the Chain Rule.

$$
\begin{aligned}
{[\cos (\sqrt{x})]^{\prime} } & =-\sin (\sqrt{x}) \cdot(\sqrt{x})^{\prime} \\
& =-\sin (\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}}
\end{aligned}
$$

(c) This is a basic derivative that you should know.

$$
[\arctan (x)]^{\prime}=\frac{1}{1+x^{2}}
$$

Math 180, Exam 2, Fall 2008
 Problem 2 Solution

2. Find the derivatives $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ for the function $f(x)=e^{-x} \sin (x)$.

Solution: The first derivative $f^{\prime}(x)$ is found using the Product and Chain Rules.

$$
\begin{aligned}
f^{\prime}(x) & =\left[e^{-x} \sin (x)\right]^{\prime} \\
& =e^{-x}(\sin (x))^{\prime}+\sin (x)\left(e^{-x}\right)^{\prime} \\
& =e^{-x} \cos (x)+\sin (x)\left(-e^{-x}\right) \\
& =e^{-x}(\cos (x)-\sin (x))
\end{aligned}
$$

The second derivative $f^{\prime \prime}(x)$ is found using the Product and Chain Rules.

$$
\begin{aligned}
f^{\prime \prime}(x) & =\left[f^{\prime}(x)\right]^{\prime} \\
& =\left[e^{-x}(\cos (x)-\sin (x))\right]^{\prime} \\
& =e^{-x}(\cos (x)-\sin (x))^{\prime}+(\cos (x)-\sin (x))\left(e^{-x}\right)^{\prime} \\
& =e^{-x}(-\sin (x)-\cos (x))+(\cos (x)-\sin (x))\left(-e^{-x}\right) \\
& =-2 e^{-x} \cos (x)
\end{aligned}
$$

Math 180, Exam 2, Fall 2008
 Problem 3 Solution

3. Use implicit differentiation to find the slope of the line tangent to the curve

$$
x y^{2}+2 x^{2}-y=0
$$

at the point $(-1,1)$.
Solution: Using implicit differentiation we get:

$$
\begin{aligned}
x y^{2}+2 x^{2}-y & =0 \\
\left(x y^{2}\right)^{\prime}+\left(2 x^{2}\right)^{\prime}-(y)^{\prime} & =(0)^{\prime} \\
{\left[(x)\left(y^{2}\right)^{\prime}+\left(y^{2}\right)(x)^{\prime}\right]+4 x-y^{\prime} } & =0 \\
{\left[(x)\left(2 y y^{\prime}\right)+\left(y^{2}\right)(1)\right]+4 x-y^{\prime} } & =0 \\
2 x y y^{\prime}+y^{2}+4 x-y^{\prime} & =0 \\
2 x y y^{\prime}-y^{\prime} & =-y^{2}-4 x \\
y^{\prime}(2 x y-1) & =-y^{2}-4 x \\
y^{\prime} & =\frac{-y^{2}-4 x}{2 x y-1}
\end{aligned}
$$

At the point $(-1,1)$, the value of y^{\prime} is:

$$
y^{\prime}(-1,1)=\frac{-(1)^{2}-4(-1)}{2(-1)(1)-1}=--1
$$

Math 180, Exam 2, Fall 2008
 Problem 4 Solution

4. Let $f(x)=x^{4}-6 x^{2}+2$.
(a) Find the critical points and the inflection points of f.
(b) On what interval is f concave down?
(c) Find the minimum value of f.

Solution:

(a) The critical points of $f(x)$ are the values of x for which either $f^{\prime}(x)$ does not exist or $f^{\prime}(x)=0$. Since $f(x)$ is a polynomial, $f^{\prime}(x)$ exists for all $x \in \mathbb{R}$ so the only critical points are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(x^{4}-6 x^{2}+2\right)^{\prime} & =0 \\
4 x^{3}-12 x & =0 \\
4 x\left(x^{2}-3\right) & =0 \\
x=0, x & = \pm \sqrt{3}
\end{aligned}
$$

Thus, $x=0$ and $x= \pm \sqrt{3}$ are the critical points of f.

The inflection points of $f(x)$ are the values of x where a sign change in $f^{\prime \prime}(x)$ occurs. To determine these points, we start by finding the solutions to $f^{\prime \prime}(x)=0$.

$$
\begin{aligned}
f^{\prime \prime}(x) & =0 \\
\left(4 x^{3}-12 x\right)^{\prime} & =0 \\
12 x^{2}-12 & =0 \\
x^{2} & =1 \\
x & = \pm 1
\end{aligned}
$$

We now split the domain $(-\infty, \infty)$ into the three intervals $(-\infty,-1),(-1,1)$, and $(1, \infty)$. We then evaluate $f^{\prime \prime}(x)$ at a test point in each interval.

Interval	Test Point, c	$f^{\prime}(c)$	Sign of $f^{\prime}(c)$
$(-\infty,-1)$	-2	$f^{\prime \prime}(-2)=36$	+
$(-1,1)$	0	$f^{\prime \prime}(0)=-12$	-
$(1, \infty)$	2	$f^{\prime \prime}(2)=36$	+

Since there are sign changes in $f^{\prime \prime}(x)$ at both $x= \pm 1$, the points $x= \pm 1$ are inflection points.
(b) From the table above, we conclude that f is concave down on $(-1,1)$ because $f^{\prime \prime}(x)<$ 0 for all $x \in(-1,1)$.
(c) The domain of $f(x)$ is $(-\infty, \infty)$. As $x \rightarrow \pm \infty, f(x) \rightarrow \infty$. Therefore, the absolute minimum of $f(x)$ will occur at a critical point. Evaluating $f(x)$ at $x=0, \pm \sqrt{3}$ we get:

$$
\begin{aligned}
f(0) & =2 \\
f(\sqrt{3}) & =-7 \\
f(-\sqrt{3}) & =-7
\end{aligned}
$$

Thus, the absolute minimum value of $f(x)$ is -7 .

Math 180, Exam 2, Fall 2008
 Problem 5 Solution

5. Find the limit: $\lim _{x \rightarrow 1} \frac{\ln (x)}{x^{3}-1}$.

Solution: Upon substituting $x=1$ into the function $\frac{\ln (x)}{x^{3}-1}$ we find that

$$
\frac{\ln (1)}{1^{3}-1}=\frac{0}{0}
$$

which is indeterminate. We resolve the indeterminacy using L'Hôpital's Rule.

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{\ln (x)}{x^{3}-1} & \stackrel{L^{\prime} / \mathrm{H}}{=} \lim _{x \rightarrow 1} \frac{(\ln (x))^{\prime}}{\left(x^{3}-1\right)^{\prime}} \\
& =\lim _{x \rightarrow 1} \frac{\frac{1}{x}}{3 x^{2}} \\
& =\lim _{x \rightarrow 1} \frac{1}{3 x^{3}} \\
& =\frac{1}{3(1)^{3}} \\
& =\frac{1}{3}
\end{aligned}
$$

Math 180, Exam 2, Fall 2008
 Problem 6 Solution

6. A family of rectangles in the $x y$-plane has one side on the x-axis, the lower left corner at the origin $(0,0)$, and the upper right corner at a point (x, y) on the straight line

$$
3 x+4 y=5 \text {. }
$$

(a) Find the area of such a rectangle as a function of x alone.
(b) Find the dimensions, x and y, of the particular rectangle with the largest area.

Solution:

(a) The dimensions of the rectangle are x and y. Therefore, the area of the rectangle has the equation:

$$
\begin{equation*}
\text { Area }=x y \tag{1}
\end{equation*}
$$

We are asked to write the area as a function of x alone. Therefore, we must find an equation that relates x to y so that we can eliminate y from the area equation. This equation is

$$
\begin{equation*}
3 x+4 y=5 \tag{2}
\end{equation*}
$$

because (x, y) must lie on this line. Solving equation (2) for y we get:

$$
\begin{equation*}
y=\frac{5}{4}-\frac{3}{4} x \tag{3}
\end{equation*}
$$

Plugging this into the area equation we get:

$$
\begin{aligned}
& \text { Area }=x\left(\frac{5}{4}-\frac{3}{4} x\right) \\
& f(x)=\frac{5}{4} x-\frac{3}{4} x^{2}
\end{aligned}
$$

(b) We seek the value of x that maximizes $f(x)$. The interval in the problem is $\left[0, \frac{5}{3}\right]$ because the upper corner of the rectangle must lie in the first quadrant.

The absolute maximum of $f(x)$ will occur either at a critical point of $f(x)$ in $\left[0, \frac{5}{3}\right]$ or at one of the endpoints. The critical points of $f(x)$ are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(\frac{5}{4} x-\frac{3}{4} x^{2}\right)^{\prime} & =0 \\
\frac{5}{4}-\frac{3}{2} x & =0 \\
5-6 x & =0 \\
x & =\frac{5}{6}
\end{aligned}
$$

Plugging this into $f(x)$ we get:

$$
f\left(\frac{5}{6}\right)=\frac{5}{4}\left(\frac{5}{6}\right)-\frac{3}{4}\left(\frac{5}{6}\right)^{2}=\frac{25}{48}
$$

Evaluating $f(x)$ at the endpoints $x=0$ and $x=\frac{5}{3}$ we get:

$$
\begin{aligned}
f(0) & =\frac{5}{4}(0)-\frac{3}{4}(0)^{2}=0 \\
f\left(\frac{5}{3}\right) & =\frac{5}{4}\left(\frac{5}{3}\right)-\frac{3}{4}\left(\frac{5}{3}\right)^{2}=0
\end{aligned}
$$

both of which are smaller than $\frac{25}{48}$. We conclude that the area is an absolute maximum at $x=\frac{5}{6}$ and that the resulting area is $\frac{25}{48}$. The last step is to find the corresponding value for y by plugging $x=3$ into equation (3).

$$
y=\frac{5}{4}-\frac{3}{4}\left(\frac{5}{6}\right)=\frac{5}{8}
$$

