Math 180, Exam 2, Fall 2009 Problem 1 Solution

1. Differentiate with respect to x. Do not simplify your answers.
(a) $\frac{\sin (2 x)}{\cos (3 x)}$,
(b) $\sqrt{x^{2}-7 x+1}$,
(c) $\arctan \left(3 x^{3}\right)$

Solution:

(a) Use the Quotient and Chain Rules.

$$
\begin{aligned}
{\left[\frac{\sin (2 x)}{\cos (3 x)}\right]^{\prime} } & =\frac{\cos (3 x)[\sin (2 x)]^{\prime}-\sin (2 x)[\cos (3 x)]^{\prime}}{[\cos (3 x)]^{2}} \\
& =\frac{\cos (3 x) \cos (2 x) \cdot(2 x)^{\prime}-\sin (2 x)[-\sin (3 x)] \cdot(3 x)^{\prime}}{[\cos (3 x)]^{2}} \\
& =\frac{\cos (3 x) \cos (2 x) \cdot 2+\sin (2 x) \sin (3 x) \cdot 3}{\cos ^{2}(3 x)}
\end{aligned}
$$

(b) Use the Chain Rule.

$$
\begin{aligned}
\left(\sqrt{x^{2}-7 x+1}\right)^{\prime} & =\frac{1}{2}\left(x^{2}-7 x+1\right)^{-1 / 2} \cdot\left(x^{2}-7 x+1\right)^{\prime} \\
& =\frac{1}{2}\left(x^{2}-7 x+1\right)^{-1 / 2} \cdot(2 x-7)
\end{aligned}
$$

(c) Use the Chain Rule.

$$
\begin{aligned}
{\left[\arctan \left(3 x^{3}\right)\right]^{\prime} } & =\frac{1}{1+\left(3 x^{3}\right)^{2}} \cdot\left(3 x^{3}\right)^{\prime} \\
& =\frac{1}{1+\left(3 x^{3}\right)^{2}} \cdot 9 x^{2}
\end{aligned}
$$

Math 180, Exam 2, Fall 2009
 Problem 2 Solution

2. The table below gives values for f and g and their derivatives:

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	3	-2	8	4
1	-1	2	5	-3
2	5	3	1	5

(a) Find $\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)$ at $x=1$.
(b) Find $\frac{d}{d x} f(g(x))$ at $x=2$.
(c) Find $\frac{d}{d x} \ln (3 f(x))$ at $x=0$.

Solution:

(a) Use the Product Rule.

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{g(x)^{2}}
$$

At $x=1$ we have:

$$
\begin{aligned}
\left.\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)\right|_{x=1} & =\frac{g(1) f^{\prime}(1)-f(1) g^{\prime}(1)}{g(1)^{2}} \\
& =\frac{(5)(2)-(-1)(-3)}{5^{2}} \\
& =\frac{7}{25}
\end{aligned}
$$

(b) Use the Chain Rule.

$$
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)
$$

At $x=2$ we have:

$$
\begin{aligned}
\left.\frac{d}{d x} f(g(x))\right|_{x=2} & =f^{\prime}(g(2)) g^{\prime}(2) \\
& =f^{\prime}(1) g^{\prime}(2) \\
& =(2)(5) \\
& =10
\end{aligned}
$$

(c) Use the Chain Rule.

$$
\begin{aligned}
\frac{d}{d x} \ln (3 f(x)) & =\frac{1}{3 f(x)} \cdot(3 f(x))^{\prime} \\
& =\frac{1}{3 f(x)} \cdot 3 f^{\prime}(x) \\
& =\frac{f^{\prime}(x)}{f(x)}
\end{aligned}
$$

At $x=0$ we have:

$$
\begin{aligned}
\left.\frac{d}{d x} \ln (3 f(x))\right|_{x=0} & =\frac{f^{\prime}(0)}{f(0)} \\
& =\frac{-2}{3}
\end{aligned}
$$

Math 180, Exam 2, Fall 2009
 Problem 3 Solution

3. Suppose x and y are related by the equation $x y^{3}+\tan (y)+x^{3}=27$.
(a) Find $\frac{d y}{d x}$ in terms of x and y.
(b) Let f be a function where $y=f(x)$ satisfies this equation and where $f(3)=0$. Use the linearization of f to approximate $f(3.1)$.

Solution:

(a) We find $\frac{d y}{d x}$ using implicit differentiation.

$$
\begin{aligned}
x y^{3}+\tan (y)+x^{3} & =27 \\
\frac{d}{d x} x y^{3}+\frac{d}{d x} \tan (y)+\frac{d}{d x} x^{3} & =\frac{d}{d x} 27 \\
x \frac{d}{d x} y^{3}+y^{3} \frac{d}{d x} x+\sec ^{2}(y) \frac{d y}{d x}+3 x^{2} & =0 \\
x\left(3 y^{2} \frac{d y}{d x}\right)+y^{3}(1)+\sec ^{2}(y) \frac{d y}{d x}+3 x^{2} & =0 \\
3 x y^{2} \frac{d y}{d x}+\sec ^{2}(y) \frac{d y}{d x} & =-y^{3}-3 x^{2} \\
\frac{d y}{d x}\left(3 x y^{2}+\sec ^{2}(y)\right) & =-y^{3}-3 x^{2} \\
\frac{d y}{d x} & =\frac{-y^{3}-3 x^{2}}{3 x y^{2}+\sec ^{2}(y)}
\end{aligned}
$$

(b) The linearization of $y=f(x)$ at $x=3$ is:

$$
L(x)=f(3)+f^{\prime}(3)(x-3)
$$

where $f(3)=0$ and

$$
\begin{aligned}
f^{\prime}(3) & =\left.\frac{d y}{d x}\right|_{(3,0)} \\
& =\frac{-0^{2}-3(3)^{2}}{3(3)(0)^{2}+\sec ^{2} 0} \\
& =-27
\end{aligned}
$$

Therefore, the linearization is $L(x)=0-27(x-3)=-27(x-3)$. The approximate value of $f(3.1)$ is $L(3.1)$:

$$
L(3.1)=-27(3.1-3)=-2.7
$$

Math 180, Exam 2, Fall 2009
 Problem 4 Solution

4. Suppose that a function $f(x)$ is defined and is decreasing and concave down for all x. Also $f(3)=5$ and $f^{\prime}(3)=-2$.
(a) Using the given properties of f, find an integer n with $|f(2)-n|<1$.
(b) If $f(r)=0$, find an integer k with $|r-k|<2$.

Solution:

(a) An equation for the line tangent to $y=f(x)$ at $x=3$ is:

$$
\begin{aligned}
y-5 & =-2(x-3) \\
y & =-2 x+11
\end{aligned}
$$

When $x=2$, we have $y=-2(2)+11=7$. Thus, $(2,7)$ is a point on the tangent line.
Knowing that f is decreasing and concave down for all x we know that the tangent line sits above the graph of $y=f(x)$ for all $x \neq 3$. Therefore, $f(2)<7$. Furthermore, since f is decreasing we know that $f(2)>f(3)=5$. We then conclude that $f(2)$ satisfies the inequality:

$$
\begin{aligned}
5<f(2) & <7 \\
-1<f(2)-6 & <1 \\
|f(2)-6| & <1
\end{aligned}
$$

Therefore, we choose $n=6$ to satisfy the inequality $|f(2)-n|<1$.
(b) The tangent line intersects the x-axis at $x=\frac{11}{2}=5.5$. Using the fact that the tangent line sits above the graph of $y=f(x)$ for $x \neq 3$, we know that:

$$
\begin{aligned}
-2 r+11 & >f(r) \\
-2 r+11 & >0 \\
2 r & <11 \\
r & <\frac{11}{2}=5.5
\end{aligned}
$$

Since we're given that $f(3)=5$ and that f is decreasing for all x we know that $r>3$. Therefore, r must satisfy the inequality $3<r<5.5$. To find an integer k that satisfies $|r-k|<2$, we manipulate the inequality $3<r<5.5$ as follows:

$$
\begin{gathered}
3<r<5.5 \\
2<3<r<5.5<6 \\
2<r<6 \\
-2<r-4<2 \\
|r-4|<2
\end{gathered}
$$

Therefore, we choose $k=4$.

Math 180, Exam 2, Fall 2009
 Problem 5 Solution

5. Suppose b is a positive real number, and consider the function

$$
f(x)=3 e^{-x^{2} / b}
$$

(a) Find the x-coordinates of the inflection points of $f(x)$.
(b) Is the graph of $f(x)$ concave up or concave down for x near 0 ?

Solution:

(a) We begin by computing $f^{\prime}(x)$ using the Chain Rule.

$$
\begin{aligned}
f^{\prime}(x) & =\left(3 e^{-x^{2} / b}\right)^{\prime} \\
f^{\prime}(x) & =3 e^{-x^{2} / b} \cdot\left(-x^{2} / b\right)^{\prime} \\
f^{\prime}(x) & =3 e^{-x^{2} / b} \cdot\left(-\frac{2}{b} x\right) \\
f^{\prime}(x) & =-\frac{6}{b} x e^{-x^{2} / b}
\end{aligned}
$$

We now compute $f^{\prime \prime}(x)$ using the Product and Chain Rules.

$$
\begin{aligned}
f^{\prime \prime}(x) & =\left(-\frac{6}{b} x e^{-x^{2} / b}\right)^{\prime} \\
f^{\prime \prime}(x) & =\left(-\frac{6}{b} x\right)\left(e^{-x^{2} / b}\right)^{\prime}+\left(e^{-x^{2} / b}\right)\left(-\frac{6}{b} x\right)^{\prime} \\
f^{\prime \prime}(x) & =\left(-\frac{6}{b} x\right)\left(-\frac{2}{b} x e^{-x^{2} / b}\right)+\left(e^{-x^{2} / b}\right)\left(-\frac{6}{b}\right) \\
f^{\prime \prime}(x) & =\frac{6}{b} e^{-x^{2} / b}\left(\frac{2}{b} x^{2}-1\right)
\end{aligned}
$$

The inflection points of $f(x)$ are the points where $f^{\prime \prime}(x)$ changes sign. For the given function $f(x)$, the critical points will occur when $f^{\prime \prime}(x)=0$. The solutions to this equation are:

$$
\begin{aligned}
f^{\prime \prime}(x) & =0 \\
\frac{6}{b} e^{-x^{2} / b}\left(\frac{2}{b} x^{2}-1\right) & =0 \\
\frac{2}{b} x^{2}-1 & =0 \\
x^{2} & =\frac{b}{2} \\
x & = \pm \sqrt{\frac{b}{2}}
\end{aligned}
$$

The domain of $f(x)$ is $(-\infty, \infty)$. We now split the domain into the three intervals $\left(-\infty,-\sqrt{\frac{b}{2}}\right),\left(-\sqrt{\frac{b}{2}}, \sqrt{\frac{b}{2}}\right)$, and $\left(\sqrt{\frac{b}{2}}, \infty\right)$. We then evaluate $f^{\prime \prime}(x)$ at a test point in each interval.

Interval	Test Point, c	$f^{\prime \prime}(c)$	Sign of $f^{\prime \prime}(c)$
$\left(-\infty,-\sqrt{\frac{b}{2}}\right)$	$-\sqrt{b}$	$f^{\prime \prime}(-\sqrt{b})=\frac{6}{b} e^{-1}$	+
$\left(-\sqrt{\frac{b}{2}}, \sqrt{\frac{b}{2}}\right)$	0	$f^{\prime \prime}(0)=-\frac{6}{b}$	-
$\left(\sqrt{\frac{b}{2}}, \infty\right)$	\sqrt{b}	$f^{\prime \prime}(\sqrt{b})=\frac{6}{b} e^{-1}$	+

Since $f^{\prime \prime}(x)$ changes sign at $x= \pm \sqrt{\frac{b}{2}}$, the points $x= \pm \sqrt{\frac{b}{2}}$ are inflection points.
(b) Using the table we conclude that $f(x)$ is concave down on $\left(-\sqrt{\frac{b}{2}}, \sqrt{\frac{b}{2}}\right)$ because $f^{\prime \prime}(x)<0$ for all $x \in\left(-\sqrt{\frac{b}{2}}, \sqrt{\frac{b}{2}}\right)$.

Math 180, Exam 2, Fall 2009
 Problem 6 Solution

6 . Find the point (x, y) on the line $y=\frac{3}{4} x$ closest to the point $(4,0)$.

Solution: The function we seek to minimize is the distance between (x, y) and $(4,0)$.
Function: \quad Distance $=\sqrt{(x-4)^{2}+(y-0)^{2}}$
The constraint in this problem is that the point (x, y) must lie on the line $y=\frac{3}{4} x$.
Constraint: $\quad y=\frac{3}{4} x$
Plugging this into the distance function (1) and simplifying we get:

$$
\begin{aligned}
\text { Distance } & =\sqrt{(x-4)^{2}+\left(\frac{3}{4} x-0\right)^{2}} \\
f(x) & =\sqrt{\frac{25}{16} x^{2}-8 x+16}
\end{aligned}
$$

We want to find the absolute minimum of $f(x)$ on the interval $(-\infty, \infty)$. We choose this interval because (x, y) must be on the line $y=\frac{3}{4} x$ and the domain of this function is $(-\infty, \infty)$.

The absolute minimum of $f(x)$ will occur either at a critical point of $f(x)$ in $(0, \infty)$ or it will not exist because the interval is open. The critical points of $f(x)$ are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
{\left[\left(\frac{25}{16} x^{2}-8 x+16\right)^{1 / 2}\right]^{\prime} } & =0 \\
\frac{1}{2}\left(\frac{25}{16} x^{2}-8 x+16\right)^{-1 / 2} \cdot\left(\frac{25}{16} x^{2}-8 x+16\right)^{\prime} & =0 \\
\frac{\frac{25}{8} x-8}{2 \sqrt{\frac{25}{16} x^{2}-8 x+16}} & =0 \\
\frac{25}{8} x-8 & =0 \\
x & =\frac{64}{25}
\end{aligned}
$$

Plugging this into $f(x)$ we get:

$$
f\left(\frac{64}{25}\right)=\sqrt{\frac{25}{16}\left(\frac{64}{25}\right)^{2}-8\left(\frac{64}{25}\right)+16}=\frac{12}{5}
$$

Taking the limits of $f(x)$ as x approaches the endpoints we get:

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} f(x) & =\lim _{x \rightarrow-\infty} \sqrt{\frac{25}{16} x^{2}-8 x+16}=\infty \\
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \sqrt{\frac{25}{16} x^{2}-8 x+16}=\infty
\end{aligned}
$$

both of which are larger than $\frac{12}{5}$. We conclude that the distance is an absolute minimum at $x=\frac{64}{25}$ and that the resulting distance is $\frac{12}{5}$. The last step is to find the corresponding value for y by plugging $x=\frac{64}{25}$ into equation (2).

$$
y=\frac{3}{4}\left(\frac{64}{25}\right)=\frac{48}{25}
$$

