Math 180, Exam 2, Fall 2010
 Problem 1 Solution

1. Find the following limits.
(a) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{\sin x}$
(b) $\lim _{x \rightarrow 0} \frac{e^{x}}{\sin x-1}$
(c) $\lim _{x \rightarrow \infty} \frac{4 x^{3}-3 x+8}{6 x^{3}+x^{2}+x-12}$

Solution:

(a) Upon substituting $x=0$ into the function $f(x)=\frac{e^{x}-1}{\sin x}$ we find that

$$
\frac{e^{x}-1}{\sin x}=\frac{e^{0}-1}{\sin 0}=\frac{0}{0}
$$

which is indeterminate. We resolve the indeterminacy by using L'Hôpital's Rule.

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{e^{x}-1}{\sin x} \stackrel{\stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=}}{=} \lim _{x \rightarrow 0} \frac{\left(e^{x}-1\right)^{\prime}}{(\sin x)^{\prime}} \\
&=\lim _{x \rightarrow 0} \frac{e^{x}}{\cos x} \\
&=\frac{e^{0}}{\cos 0} \\
&=1
\end{aligned}
$$

(b) The function $f(x)=\frac{e^{x}}{\sin x-1}$ is continuous at $x=0$. Therefore, we can find the value of the limit using the substitution method.

$$
\lim _{x \rightarrow 0} \frac{e^{x}}{\sin x-1}=\frac{e^{0}}{\sin 0-1}=-1
$$

(c) Since the degrees of the numerator and denominator of the rational function $f(x)=$ $\frac{4 x^{3}-3 x+8}{6 x^{3}+x^{2}+x-12}$ are the same, the limit of $f(x)$ as $x \rightarrow \infty$ is the ratio of the leading coefficients. That is,

$$
\lim _{x \rightarrow \infty} \frac{4 x^{3}-3 x+8}{6 x^{3}+x^{2}+x-12}=\frac{4}{6}=\frac{2}{3}
$$

Math 180, Exam 2, Fall 2010
 Problem 2 Solution

2. Let $f(x)=\frac{x^{2}}{x+1}$.
(a) Find the critical points of f.
(b) Use the second derivative test to classify the critical points as maxima or minima.
(c) Find the absolute minimum and maximum values of f on the interval $\left[-3,-\frac{3}{2}\right]$.

Solution:

(a) The critical points of $f(x)$ are the values of x for which either $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist. The derivative $f^{\prime}(x)$ can be found using the quotient rule.

$$
\begin{aligned}
f^{\prime}(x) & =\left(\frac{x^{2}}{x+1}\right)^{\prime} \\
& =\frac{(x+1)\left(x^{2}\right)^{\prime}-\left(x^{2}\right)(x+1)^{\prime}}{(x+1)^{2}} \\
& =\frac{(x+1)(2 x)-\left(x^{2}\right)(1)}{(x+1)^{2}} \\
& =\frac{x^{2}+2 x}{(x+1)^{2}}
\end{aligned}
$$

$f^{\prime}(x)$ exists for all $x \neq-1$ but $x=-1$ is not in the domain of f. Therefore, the only critical points are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\frac{x^{2}+2 x}{(x+1)^{2}} & =0 \\
x^{2}+2 x & =0 \\
x(x+2) & =0 \\
x=0, x & =-2
\end{aligned}
$$

The corresponding function values are $f(0)=0$ and $f(-2)=-4$. Thus, the critical points are $(0,0)$ and $(-2,-4)$.
(b) We use the Second Derivative Test to classify the critical points. The second derivative
is found using the quotient rule.

$$
\begin{aligned}
f^{\prime \prime}(x) & =\left(\frac{x^{2}+2 x}{(x+1)^{2}}\right)^{\prime} \\
& =\frac{(x+1)^{2}\left(x^{2}+2 x\right)^{\prime}-\left(x^{2}+2 x\right)\left[(x+1)^{2}\right]^{\prime}}{\left[(x+1)^{2}\right]^{2}} \\
& =\frac{(x+1)^{2}(2 x+2)-\left(x^{2}+2 x\right)[2(x+1)]}{(x+1)^{4}} \\
& =\frac{2(x+1)^{3}-2 x(x+2)(x+1)}{(x+1)^{4}} \\
& =\frac{2(x+1)^{2}-2 x(x+2)}{(x+1)^{3}} \\
& =\frac{2 x^{2}+4 x+2-2 x^{2}-4 x}{(x+1)^{3}} \\
& =\frac{2}{(x+1)^{3}}
\end{aligned}
$$

At the critical points, we have:

$$
\begin{aligned}
f^{\prime \prime}(0) & =\frac{2}{(0+1)^{3}}=2 \\
f^{\prime \prime}(-2) & =\frac{2}{(-2+1)^{3}}=-2
\end{aligned}
$$

Since $f^{\prime \prime}(-2)<0$ the Second Derivative Test implies that $f(-2)=-4$ is a local maximum. Since $f^{\prime \prime}(0)>0$ the Second Derivative Test implies that $f(0)=0$ is a local minimum.
(c) The absolute extrema of f will occur either at a critical point in $\left[-3,-\frac{3}{2}\right]$ or at one of the endpoints. From part (a), we found that the critical numbers of f are $x=0$ and $x=-2$. Since $x=0$ is outside the interval, we only evaluate f at $x=-3, x=-2$, and $x=-\frac{3}{2}$.

$$
\begin{aligned}
& f(-3)=\frac{(-3)^{2}}{-3+1}=-\frac{9}{2} \\
& f(-2)=\frac{(-2)^{2}}{-2+1}=-4 \\
& f\left(-\frac{3}{2}\right)=\frac{\left(-\frac{3}{2}\right)^{2}}{-\frac{3}{2}+1}=-\frac{9}{2}
\end{aligned}
$$

The absolute maximum of f on $\left[-3,-\frac{3}{2}\right]$ is -4 because it is the largest of the values of f above and the absolute minimum is $-\frac{9}{2}$ because it is the smallest.

Math 180, Exam 2, Fall 2010
 Problem 3 Solution

3. Estimate a root of the polynomial $f(x)=x^{3}+x+3=0$ by performing one step of Newton's method, beginning with $x_{0}=-1$.

Solution: The Newton's method formula to compute x_{1} is

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

where $f(x)=x^{3}+x+3$. The derivative $f^{\prime}(x)$ is $f^{\prime}(x)=3 x^{2}+1$. Plugging $x_{0}=-1$ into the formula we get:

$$
\begin{aligned}
& x_{1}=x_{0}-\frac{x_{0}^{3}+x_{0}+3}{3 x_{0}^{2}+1} \\
& x_{1}=-1-\frac{(-1)^{3}+(-1)+3}{3(-1)^{2}+1} \\
& x_{1}=-1-\frac{-1-1+3}{3+1} \\
& x_{1}=-\frac{5}{4}
\end{aligned}
$$

Math 180, Exam 2, Fall 2010
 Problem 4 Solution

4. Find the point on the parabola $y=x^{2}$ which is closest to the point $(3,0)$.

Solution: The function we seek to minimize is the distance between (x, y) and $(3,0)$.

Function: \quad Distance $=\sqrt{(x-3)^{2}+(y-0)^{2}}$
The constraint in this problem is that the point (x, y) must lie on the curve $y=x^{2}$.

Constraint : $\quad y=x^{2}$
Plugging this into the distance function (1) and simplifying we get:

$$
\begin{aligned}
\text { Distance } & =\sqrt{(x-3)^{2}+\left(x^{2}-0\right)^{2}} \\
f(x) & =\sqrt{x^{2}-6 x+9+x^{4}}
\end{aligned}
$$

We want to find the absolute minimum of $f(x)$ on the interval $(-\infty, \infty)$. We choose this interval because (x, y) must be on the parabola $y=x^{2}$ and the domain of this function is $(-\infty, \infty)$.

The absolute minimum of $f(x)$ will occur either at a critical point of $f(x)$ in $(-\infty, \infty)$ or it will not exist. The critical points of $f(x)$ are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
{\left[\left(x^{2}-6 x+9+x^{4}\right)^{1 / 2}\right]^{\prime} } & =0 \\
\frac{1}{2}\left(x^{2}-6 x+9+x^{4}\right)^{-1 / 2} \cdot\left(x^{2}-6 x+9+x^{4}\right)^{\prime} & =0 \\
\frac{2 x-6+4 x^{3}}{2 \sqrt{x^{2}-6 x+9+x^{4}}} & =0 \\
2 x-6+4 x^{3} & =0 \\
2 x^{3}+x-3 & =0
\end{aligned}
$$

This is a cubic equation, which is slightly difficult to solve. However, by inspection, we notice that $x=1$ is a solution (the other two solutions are complex). Plugging this into $f(x)$ we get:

$$
f(1)=\sqrt{1^{2}-6(1)+9+1^{4}}=\sqrt{5}
$$

Taking the limit as $x \rightarrow \pm \infty$ we get:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \sqrt{x^{2}-6 x+9+x^{4}}=\infty \\
\lim _{x \rightarrow-\infty} f(x) & =\lim _{x \rightarrow-\infty} \sqrt{x^{2}-6 x+9+x^{4}}=\infty
\end{aligned}
$$

both of which are larger than $\sqrt{5}$. We conclude that the distance is an absolute minimum at $x=1$ and that the resulting distance is $\sqrt{5}$. The last step is to find the corresponding value for y by plugging $x=1$ into equation (2).

$$
y=1^{2}=1
$$

Math 180, Exam 2, Fall 2010
 Problem 5 Solution

5. Shown below is the graph of $f^{\prime}(x)$, the derivative of the function $f(x)$.
(a) Using the graph of $f^{\prime}(x)$ below, determine the intervals where $f(x)$ is increasing, decreasing, concave up, or concave down.
(b) Given that $f(0)=0$, use your results from part (a) to sketch the graph of $f(x)$ for $x \in[0,6]$.
(c) On the graph of $f(x)$ that you sketched in part (b), clearly label all maxima, minima, and inflection points.

Solution:

(a) $f(x)$ is increasing on (a, b) when $f^{\prime}(x)>0$ for all $x \in(a, b)$. This occurs on $(0,1) \cup$ $(5.5,6)$ because the graph is above the x-axis for these values of $x . f(x)$ is decreasing on (a, b) when $f^{\prime}(x)<0$ for all $x \in(a, b)$. This occurs on $(1,3) \cup(3,5.5)$ because the graph is below the x-axis for these values of $x . f(x)$ is concave up on (a, b) when $f^{\prime}(x)$ is increasing on (a, b). This occurs on $(2,3) \cup(4.5,6)$ because the graph is rising for these values of $x . f(x)$ is concave down on (a, b) when $f^{\prime}(x)$ is decreasing on (a, b). This occurs on $(0,2) \cup(3,4.5)$ because the graph is falling for these values of x.
(b) The general shape of the graph is shown below. (Note: the graph is not necessarily to scale.)

(c) f has a local maximum at $x=c$ when $f^{\prime}(c)=0$ and the sign of f^{\prime} changes from positive to negative at $x=c$. This occurs at $x=1 . f$ has a local minimum at $x=c$ when $f^{\prime}(c)=0$ and the sign of f^{\prime} changes from negative to positive at $x=c$. This occurs at $x=5.5$. f has an inflection point at $x=c$ when $f^{\prime \prime}(c)=0$ and the sign of $f^{\prime \prime}$ changes at $x=c$. This occurs at $x=2,3,4.5$.

