Math 180, Exam 2, Fall 2011
 Problem 1 Solution

1. Find the derivative of each function. Do not simplify your answers.
(a) $\log _{5}(6+\sin x)$
(b) $x^{\sin x}$
(c) $\tan ^{-1}\left(e^{1-x}\right)$

Solution:

(a) Use the Chain Rule.

$$
\begin{aligned}
\frac{d}{d x} \log _{5}(6+\sin x) & =\frac{1}{\ln 5} \cdot \frac{1}{6+\sin x} \cdot(6+\sin x)^{\prime} \\
& =\frac{1}{\ln 5} \cdot \frac{1}{6+\sin x} \cdot \cos x
\end{aligned}
$$

(b) First rewrite the function as the exponential of a logarithm and simplify using a logarithm rule.

$$
x^{\sin x}=e^{\ln x^{\sin x}}=e^{\sin x \ln x}
$$

Now use the Chain and Product Rules.

$$
\begin{aligned}
\frac{d}{d x} x^{\sin x} & =\frac{d}{d x} e^{\sin x \ln x} \\
& =e^{\sin x \ln x}\left[(\sin x)(\ln x)^{\prime}+(\sin x)^{\prime}(\ln x)\right] \\
& =e^{\sin x \ln x}\left(\frac{\sin x}{x}+\cos x \ln x\right) \\
& =x^{\sin x\left(\frac{\sin x}{x}+\cos x \ln x\right)}
\end{aligned}
$$

(c) Use the Chain Rule.

$$
\begin{aligned}
\frac{d}{d x} \tan ^{-1}\left(e^{1-x}\right) & =\frac{1}{1+\left(e^{1-x}\right)^{2}} \cdot\left(e^{1-x}\right)^{\prime} \\
& =\frac{1}{1+\left(e^{1-x}\right)^{2}} \cdot\left(-e^{1-x}\right)
\end{aligned}
$$

Math 180, Exam 2, Fall 2011
 Problem 2 Solution

2. Find a point (x, y) on the graph of $y=\frac{x^{2}}{6}+4$ nearest the point $P=(0,13)$.

Hint: Find the minimum value of the square of the distance between (x, y) and P.
Solution: The function we seek to minimize is the square of the distance between (x, y) and $(0,13)$.

Function: \quad Distance $^{2}=(x-0)^{2}+(y-13)^{2}$
The constraint in this problem is that the point (x, y) must lie on the curve $y=\frac{x^{2}}{6}+4$.
Constraint : $\quad y=\frac{x^{2}}{6}+4$
Plugging this into the distance function (1) and simplifying we get:

$$
\begin{aligned}
\text { Distance }^{2} & =(x-0)^{2}+\left(\frac{x^{2}}{6}+4-13\right)^{2} \\
f(x) & =x^{2}+\left(\frac{x^{2}}{6}-9\right)^{2} \\
f(x) & =x^{2}+\frac{x^{4}}{36}-3 x^{2}+81 \\
f(x) & =\frac{x^{4}}{36}-2 x^{2}+81
\end{aligned}
$$

We want to find the absolute minimum of $f(x)$ on the interval $(-\infty, \infty)$. We choose this interval because (x, y) must be on the parabola $y=\frac{x^{2}}{6}+4$ and the domain of this function is $(-\infty, \infty)$.

The absolute minimum of $f(x)$ will occur either at a critical point of $f(x)$ in $(-\infty, \infty)$ or it will not exist. The critical points of $f(x)$ are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\frac{d}{d x}\left(\frac{x^{4}}{36}-2 x^{2}+81\right) & =0 \\
\frac{x^{3}}{9}-4 x & =0 \\
x\left(\frac{x^{2}}{9}-4\right) & =0 \\
x=0 \quad \text { or } \quad \frac{x^{2}}{9} & =4 \\
x=0 \quad \text { or } \quad x= \pm 6 & =1
\end{aligned}
$$

Plugging these values into $f(x)$ we get:

$$
\begin{aligned}
f(0) & =\frac{0^{4}}{36}-2(0)^{2}+81=81 \\
f(-6) & =\frac{(-6)^{4}}{36}-2(-6)^{2}+81=45 \\
f(6) & =\frac{6^{4}}{36}-2(6)^{2}+81=45
\end{aligned}
$$

Taking the limit as $x \rightarrow \pm \infty$ we get:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty}\left(\frac{x^{4}}{36}-2 x^{2}+81\right)=\infty \\
\lim _{x \rightarrow-\infty} f(x) & =\lim _{x \rightarrow-\infty}\left(\frac{x^{4}}{36}-2 x^{2}+81\right)=\infty
\end{aligned}
$$

The smallest of the above values of the function and of the limits is 45 . Thus, we conclude that the distance is an absolute minimum at $x= \pm 6$ and that the resulting square of the distance is 45 . The last step is to find the corresponding values for y by plugging $x= \pm 6$ into equation (2).

$$
y=\frac{(\pm 6)^{2}}{6}+4=10
$$

Math 180, Exam 2, Fall 2011
 Problem 3 Solution

3. Consider the equation $x^{2}+x y+2 y^{2}=4$.
(a) Use implicit differentiation to compute the derivative $\frac{d y}{d x}$.
(b) Find an equation for the tangent line to the curve at $(1,1)$.

Solution:

(a) Using implicit differentiation we get:

$$
\begin{aligned}
\frac{d}{d x} x^{2}+\frac{d}{d x}(x y)+\frac{d}{d x} 2 y^{2} & =\frac{d}{d x} 4 \\
2 x+x \frac{d y}{d x}+y+4 y \frac{d y}{d x} & =0 \\
x \frac{d y}{d x}+4 y \frac{d y}{d x} & =-2 x-y \\
\frac{d y}{d x}(x+4 y) & =-2 x-y \\
\frac{d y}{d x} & =\frac{-2 x-y}{x+4 y}
\end{aligned}
$$

(b) At the point $(1,1)$, the value of $\frac{d y}{d x}$ is:

$$
\left.\frac{d y}{d x}\right|_{(1,1)}=\frac{-2(1)-1}{1+4(1)}=-\frac{3}{5}
$$

This is the slope of the tangent line at $(1,1)$. Therefore, an equation for the tangent line in point-slope form is

$$
y-1=-\frac{3}{5}(x-1)
$$

Math 180, Exam 2, Fall 2011
 Problem 4 Solution

4. (a) Verify that $f(x)=x \sqrt{x+6}$ satisfies the hypotheses of Rolle's Theorem on the interval $[-6,0]$.
(b) Find all numbers c that satisfy the conclusion of Rolle's Theorem.

Solution:

(a) First, we note that $f(x)=x \sqrt{x+6}$ is continuous on $[-6,0]$. Next, the derivative $f^{\prime}(x)$ is

$$
f^{\prime}(x)=\sqrt{x+6}+\frac{x}{2 \sqrt{x+6}}
$$

which exists for all x in $(-6,0)$. Finally, we have $f(-6)=f(0)=0$. Therefore, Rolle's Theorem can be applied.
(b) The conclusion of Rolle's Theorem is that there exists at least one c in $(-6,0)$ such that $f^{\prime}(c)=0$. The corresponding value of c are

$$
\begin{aligned}
f^{\prime}(c) & =0, \\
\sqrt{c+6}+\frac{c}{2 \sqrt{c+6}} & =0, \\
2(c+6)+c & =0, \\
3 c & =-12, \\
c & =-4
\end{aligned}
$$

Math 180, Exam 2, Fall 2011
 Problem 5 Solution

5. Consider the function $f(x)=x^{4}-2 x^{2}$.
(a) Find the intervals on which f is increasing or decreasing.
(b) Find the intervals on which f is concave up or concave down.
(c) Find the local extrema of f. Which, if any, are absolute extrema?

Solution:

(a) We begin by finding the critical points of $f(x)$. These occur when either $f^{\prime}(x)$ does not exist or $f^{\prime}(x)=0$. Since $f(x)$ is a polynomial we know that $f^{\prime}(x)$ exists for all $x \in \mathbb{R}$. Therefore, the only critical points are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(x^{4}-2 x^{2}\right)^{\prime} & =0 \\
4 x^{3}-4 x & =0 \\
4 x\left(x^{2}-1\right) & =0 \\
x=0, x & = \pm 1 .
\end{aligned}
$$

The domain of $f(x)$ is $(-\infty, \infty)$. We now split the domain into the four intervals $(-\infty,-1),(-1,0),(0,1)$, and $(1, \infty)$. We then evaluate $f^{\prime}(x)$ at a test point in each interval to determine the intervals of monotonicity.

Interval	Test Point, c	$f^{\prime}(c)$	Sign of $f^{\prime}(c)$
$(-\infty,-1)$	-2	$f^{\prime}(-2)=-24$	-
$(-1,0)$	$-\frac{1}{2}$	$f^{\prime}\left(-\frac{1}{2}\right)=\frac{3}{2}$	+
$(0,1)$	$\frac{1}{2}$	$f^{\prime}\left(\frac{1}{2}\right)=-\frac{3}{2}$	-
$(1, \infty)$	2	$f^{\prime}(2)=24$	+

Using the table we conclude that $f(x)$ is increasing on $(-1,0) \cup(1, \infty)$ because $f^{\prime}(x)>0$ for all $x \in(-1,0) \cup(1, \infty)$ and $f(x)$ is decreasing on $(-\infty,-1) \cup(0,1)$ because $f^{\prime}(x)<0$ for all $x \in(-\infty,-1) \cup(0,1)$.
(b) To find the intervals of concavity we begin by finding solutions to $f^{\prime \prime}(x)=0$.

$$
\begin{aligned}
f^{\prime \prime}(x) & =0 \\
\left(4 x^{3}-4 x\right)^{\prime} & =0 \\
12 x^{2}-4 & =0 \\
x^{2} & =\frac{1}{3} \\
x & = \pm \frac{1}{\sqrt{3}}
\end{aligned}
$$

We now split the domain into the three intervals $\left(-\infty,-\frac{1}{\sqrt{3}}\right),\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$, and $\left(\frac{1}{\sqrt{3}}, \infty\right)$. We then evaluate $f^{\prime \prime}(x)$ at a test point in each interval to determine the intervals of monotonicity.

Interval	Test Point, c	$f^{\prime \prime}(c)$	Sign of $f^{\prime \prime}(c)$
$\left(-\infty,-\frac{1}{\sqrt{3}}\right)$	-1	$f^{\prime \prime}(-1)=8$	+
$\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$	0	$f^{\prime \prime}(0)=-4$	-
$\left(\frac{1}{\sqrt{3}}, \infty\right)$	1	$f^{\prime \prime}(1)=8$	+

Using the table we conclude that $f(x)$ is concave up on $\left(-\infty,-\frac{1}{\sqrt{3}}\right) \cup\left(\frac{1}{\sqrt{3}}, \infty\right)$ because $f^{\prime \prime}(x)>0$ for all $x \in\left(-\infty,-\frac{1}{\sqrt{3}}\right) \cup\left(\frac{1}{\sqrt{3}}, \infty\right)$ and $f(x)$ is concave down on $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ because $f^{\prime \prime}(x)<0$ for all $x \in\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.
(c) Using the First Derivative Test and the table from part (a), we conclude that the points $(-1,-1)$ and $(1,-1)$ correspond to local minima and the point $(0,0)$ corresponds to a local maximum. Furthermore, since

$$
\lim _{x \rightarrow \pm \infty} f(x)=+\infty
$$

we know that $(-1,-1)$ and $(1,-1)$ also correspond to absolute minima. However, $f(x)$ has no absolute maximum on its domain.

