Math 180, Exam 2, Fall 2012
 Problem 1 Solution

1. Find derivatives of the following functions:
(a) $f(x)=\tan ^{-1}\left(\sqrt{x^{2}+1}\right)$
(b) $f(x)=\ln \left(\frac{2^{x}}{x^{2}+1}\right)$
(c) $f(x)=x^{\sin (x)}$

Solution:

(a) The derivative is computed using the Chain Rule twice.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{\left(\sqrt{x^{2}+1}\right)^{2}+1} \cdot \frac{d}{d x} \sqrt{x^{2}+1} \\
& =\frac{1}{\left(x^{2}+1\right)+1} \cdot \frac{1}{2 \sqrt{x^{2}+1}} \cdot \frac{d}{d x}\left(x^{2}+1\right) \\
& =\frac{1}{x^{2}+2} \cdot \frac{1}{2 \sqrt{x^{2}+1}} \cdot 2 x
\end{aligned}
$$

(b) We begin by rewriting the function using rules of logarithms.

$$
\ln \left(\frac{2^{x}}{x^{2}+1}\right)=\ln \left(2^{x}\right)-\ln \left(x^{2}+1\right)=x \ln (2)-\ln \left(x^{2}+1\right)
$$

Thus, the derivative is

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x} x \ln (2)-\frac{d}{d x} \ln \left(x^{2}+1\right) \\
& =\ln (2)-\frac{1}{x^{2}+1} \cdot \frac{d}{d x}\left(x^{2}+1\right) \\
& =\ln (2)-\frac{1}{x^{2}+1} \cdot 2 x
\end{aligned}
$$

(c) To differentiate the function we rewrite it as

$$
x^{\sin (x)}=e^{\ln x^{\sin (x)}}=e^{\sin (x) \ln (x)}
$$

The derivative is then

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x} e^{\sin (x) \ln (x)} \\
& =e^{\sin (x) \ln (x)} \cdot \frac{d}{d x} \sin (x) \ln (x) \\
& =e^{\sin (x) \ln (x)} \cdot\left[\cos (x) \ln (x)+\sin (x) \cdot \frac{1}{x}\right] \\
& =x^{\sin (x)} \cdot\left[\cos (x) \ln (x)+\frac{\sin (x)}{x}\right]
\end{aligned}
$$

Math 180, Exam 2, Fall 2012

Problem 2 Solution

2. Use implicit differentiation to find $\frac{d y}{d x}$ where $\tan \left(x^{2} y\right)=4 y$.

Solution: Taking the derivative of both sides of the equation we obtain

$$
\begin{aligned}
\frac{d}{d x} \tan \left(x^{2} y\right) & =\frac{d}{d x} 4 y \\
\sec ^{2}\left(x^{2} y\right) \cdot \frac{d}{d x} x^{2} y & =2 \frac{d y}{d x} \\
\sec ^{2}\left(x^{2} y\right) \cdot\left(2 x y+x^{2} \frac{d y}{d x}\right) & =2 \frac{d y}{d x} \\
2 x y \sec ^{2}\left(x^{2} y\right)+x^{2} \sec ^{2}\left(x^{2} y\right) \frac{d y}{d x} & =2 \frac{d y}{d x}
\end{aligned}
$$

Solving for $\frac{d y}{d x}$ we obtain

$$
\begin{aligned}
\frac{d y}{d x}\left[2-x^{2} \sec ^{2}\left(x^{2} y\right)\right] & =2 x y \sec ^{2}\left(x^{2} y\right) \\
\frac{d y}{d x} & =\frac{2 x y \sec ^{2}\left(x^{2} y\right)}{2-x^{2} \sec ^{2}\left(x^{2} y\right)}
\end{aligned}
$$

Math 180, Exam 2, Fall 2012
 Problem 3 Solution

3. Consider the function $f(x)=2 x^{3}+3 x^{2}-12 x+5$.
(a) Find the intervals on which f is increasing or decreasing.
(b) Find the points of local maximum and local minimum of f.
(c) Find the intervals on which f is concave up or concave down.

Solution: The first two derivatives of f are:

$$
f^{\prime}(x)=6 x^{2}+6 x-12, \quad f^{\prime \prime}(x)=12 x+6
$$

(a) To determine the intervals of monotonicity of f we begin by finding the points where $f^{\prime}=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
6 x^{2}+6 x-12 & =0 \\
6\left(x^{2}+x-2\right) & =0 \\
6(x+2)(x-1) & =0 \\
x=-2 \text { or } x & =1
\end{aligned}
$$

We summarize the desired information about f by way of the following table:

Interval	Test \#, c	$f^{\prime}(c)$	Sign of $f^{\prime}(c)$	Conclusion
$(-\infty,-2)$	-3	24	+	increasing
$(-2,1)$	0	-12	-	decreasing
$(1, \infty)$	2	24	+	increasing

Thus, f is increasing on $(-\infty,-2) \cup(1, \infty)$ and decreasing on $(-2,1)$.
(b) By the First Derivative Test, f has

- a local maximum at $x=-2\left(f^{\prime}\right.$ changes sign from + to $\left.-\operatorname{across} x=-2\right)$ and - a local minimum at $x=1\left(f^{\prime}\right.$ changes sign from - to $\left.+\operatorname{across} x=1\right)$.
(c) To determine the intervals of concavity of f we begin by finding the points where $f^{\prime \prime}=0$.

$$
\begin{aligned}
f^{\prime \prime}(x) & =0 \\
12 x+6 & =0 \\
x & =-\frac{1}{2}
\end{aligned}
$$

We summarize the desired information about f by way of the following table:

Interval	Test \#, c	$f^{\prime \prime}(c)$	Sign of $f^{\prime \prime}(c)$	Conclusion
$\left(-\infty,-\frac{1}{2}\right)$	-1	-6	-	concave down
$\left(-\frac{1}{2}, \infty\right)$	0	6	+	concave up

Math 180, Exam 2, Fall 2012
 Problem 4 Solution

4. The product of two positive numbers is 200 . Find the two numbers if the sum of their squares is to be as small as possible.

Solution: Let x and y be the numbers of interest. Since their product is known to be 200 we have

$$
x y=200
$$

The function to be minimized is the sum of their squares, i.e. $x^{2}+y^{2}$. Solving the constraint equation for y yields:

$$
y=\frac{200}{x}
$$

The function is then

$$
f(x)=x^{2}+\left(\frac{200}{x}\right)^{2}=x^{2}+\frac{200^{2}}{x^{2}}
$$

Note that the domain of f is $(0, \infty)$ since x must be positive.
The rest of our analysis begins with finding the critical points of f.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
2 x-\frac{2 \cdot 200^{2}}{x^{3}} & =0 \\
2 x^{4}-2 \cdot 200^{2} & =0 \\
x^{4} & =200^{2} \\
x^{2} & =200 \\
x & =10 \sqrt{2}
\end{aligned}
$$

Since f is concave up on its domain ($f^{\prime \prime}=2+6 \cdot 200^{2} / x^{4}>0$ for all $x>0$), we know that f has an absolute minimum at $x=10 \sqrt{2}$. The corresponding y-value is

$$
y=\frac{200}{10 \sqrt{2}}=10 \sqrt{2}
$$

Math 180, Exam 2, Fall 2012
 Problem 5 Solution

5. Let f be a function such that $f(3)=1$ and $f^{\prime}(3)=2$.
(a) Use the linear approximation of f about $x=3$ to estimate $f(3.1)$.
(b) Let g be the inverse of f. Find $g(1)$ and $g^{\prime}(1)$.

Solution:

(a) The linear approximation of f about $x=3$ is

$$
L(x)=f(3)+f^{\prime}(3)(x-3)=1+2(x-3)
$$

The approximate value of $f(3.1)$ is then

$$
f(3.1) \approx L(3.1)=1+2(3.1-3)=1.2
$$

(b) By the property of inverses, we know that if $f(a)=b$ then $g(b)=a$ if g is the inverse of f. Thus, since $f(3)=1$ we know that $g(1)=3$. Furthermore, the derivative $g^{\prime}(b)$ has the formula

$$
g^{\prime}(b)=\frac{1}{f^{\prime}(g(b))}
$$

Therefore, the derivative $g^{\prime}(1)$ is

$$
g^{\prime}(1)=\frac{1}{f^{\prime}(g(1))}=\frac{1}{f^{\prime}(3)}=\frac{1}{2}
$$

