Math 180, Exam 2, Fall 2013
 Problem 1 Solution

1. Compute each derivative below.
(a) $\frac{d}{d x}\left(2^{x} \cdot \arcsin \left(x^{3}\right)\right) \quad\left[\right.$ Note: $\left.\arcsin (x)=\sin ^{-1}(x)\right]$
(b) $\frac{d}{d x}(\sin (x))^{x} \quad$ [Hint: Logarithmic differentiation may be useful.]

Solution:

(a) Using the Product Rule and the derivative rules for $\arcsin (x)$ and b^{x} we have

$$
\begin{aligned}
\frac{d}{d x}\left(2^{x} \cdot \arcsin \left(x^{3}\right)\right) & =2^{x} \cdot \frac{d}{d x} \arcsin \left(x^{3}\right)+\arcsin \left(x^{3}\right) \cdot \frac{d}{d x} 2^{x} \\
\frac{d}{d x}\left(2^{x} \cdot \arcsin \left(x^{3}\right)\right) & =2^{x} \cdot \frac{1}{\sqrt{1-\left(x^{3}\right)^{2}}} \cdot \frac{d}{d x} x^{3}+\arcsin \left(x^{3}\right) \cdot \ln (2) \cdot 2^{x} \\
\frac{d}{d x}\left(2^{x} \cdot \arcsin \left(x^{3}\right)\right) & =2^{x} \cdot \frac{1}{\sqrt{1-\left(x^{3}\right)^{2}}} \cdot 3 x^{2}+\arcsin \left(x^{3}\right) \cdot \ln (2) \cdot 2^{x}
\end{aligned}
$$

(b) Let $y=(\sin (x))^{x}$. Then $\ln (y)=\ln (\sin (x))^{x}=x \cdot \ln (\sin (x))$. Differentiating both sides of this equation with respect to x yields

$$
\begin{aligned}
\frac{d}{d x}[\ln (y)] & =\frac{d}{d x}[x \cdot \ln (\sin (x))] \\
\frac{1}{y} \cdot \frac{d y}{d x} & =x \cdot \frac{d}{d x} \ln (\sin (x))+\ln (\sin (x)) \cdot \frac{d}{d x} x \\
\frac{1}{y} \cdot \frac{d y}{d x} & =x \cdot \frac{1}{\sin (x)} \cdot \frac{d}{d x} \sin (x)+\ln (\sin (x)) \cdot 1 \\
\frac{1}{y} \cdot \frac{d y}{d x} & =x \cdot \frac{1}{\sin (x)} \cdot \cos (x)+\ln (\sin (x)) \\
\frac{d y}{d x} & =y\left(x \cdot \frac{\cos (x)}{\sin (x)}+\ln (\sin (x))\right) \\
\frac{d y}{d x} & =(\sin (x))^{x}\left(x \cdot \frac{\cos (x)}{\sin (x)}+\ln (\sin (x))\right)
\end{aligned}
$$

Math 180, Exam 2, Fall 2013
 Problem 2 Solution

2. Consider the function $g(x)=x \sqrt{x+1}$.
(a) State the domain of g.
(b) State the intervals where g is increasing and those where g is decreasing.

Solution: The domain of g is $x \geq-1$. Solution: We begin by finding the critical points of g. The derivative $g^{\prime}(x)$ is found using the Product Rule:

$$
\begin{aligned}
& g^{\prime}(x)=x \cdot \frac{d}{d x} \sqrt{x+1}+\sqrt{x+1} \cdot \frac{d}{d x} x \\
& g^{\prime}(x)=x \cdot \frac{1}{2 \sqrt{x+1}} \cdot \frac{d}{d x}(x+1)+\sqrt{x+1} \cdot 1 \\
& g^{\prime}(x)=x \cdot \frac{1}{2 \sqrt{x+1}} \cdot 1+\sqrt{x+1} \\
& g^{\prime}(x)=\frac{x}{2 \sqrt{x+1}}+\sqrt{x+1}
\end{aligned}
$$

The critical points of g are solutions to $g^{\prime}(x)=0$:

$$
\begin{aligned}
g^{\prime}(x) & =0 \\
\frac{x}{2 \sqrt{x+1}}+\sqrt{x+1} & =0 \\
x+2 \sqrt{x+1} \cdot \sqrt{x+1} & =0 \\
x+2(x+1) & =0 \\
3 x+2 & =0 \\
x & =-\frac{2}{3}
\end{aligned}
$$

Summarize your results in the table below. Note: It may not be necessary to use every row in the table.

Interval	Test \#,c	$f^{\prime}(c)$	Sign of $f^{\prime}(c)$	Conclusion
$(-1,-2 / 3)$	$-3 / 4$	$-1 / 4$	-	decreasing
$(-2 / 3, \infty)$	0	1	+	increasing

Find all local extrema of g, or state that none exist.
Solution: $g(-2 / 3)$ is a local minimum of g because the derivative of g changes from negative to positive across $x=-2 / 3$. There is no local maximum.

Using the information in parts (a)-(c), sketch g.

Consider the function $f(x)=\sqrt[3]{x}$. Find the best linear approximation to f at $x=8$.
Solution: The linear approximation is given by

$$
L(x)=f(8)+f^{\prime}(8)(x-8)
$$

The derivative $f^{\prime}(x)$ is

$$
f^{\prime}(x)=\frac{d}{d x} x^{1 / 3}=\frac{1}{3} x^{-2 / 3}
$$

At $x=8$ we have

$$
f^{\prime}(8)=\frac{1}{3} 8^{-2 / 3}=\frac{1}{12}, \quad f(8)=8^{1 / 3}=2
$$

. Therefore, the linear approximation is

$$
L(x)=2+\frac{1}{12}(x-8)
$$

Use part (a) to estimate $\sqrt[3]{7.7}$. Write your answer in the form $\frac{a}{b}$ where a and b are integers.
Solution: An estimate for $\sqrt[3]{7.7}$ is

$$
\begin{aligned}
\sqrt[3]{7.7} \approx L(7.7) & =2+\frac{1}{12}(7.7-8) \\
\sqrt[3]{7.7} & =2+\frac{1}{12} \cdot(-0.3) \\
\sqrt[3]{7.7} & =2+\frac{1}{12}\left(-\frac{3}{10}\right) \\
\sqrt[3]{7.7} & =2-\frac{1}{40} \\
\sqrt[3]{7.7} & =\frac{79}{40}
\end{aligned}
$$

Is your answer in part (b) an underestimate or an overestimate? Justify your answer.
Solution: To determine whether the estimate is an overestimate or an underestimate, we determine whether f is concave up or concave down at $x=8$. The second derivative $f^{\prime \prime}(x)$ is

$$
f^{\prime \prime}(x)=\frac{d}{d x} \frac{1}{3} x^{-2 / 3}=-\frac{2}{9} x^{-5 / 3}
$$

At $x=8$ we have

$$
f^{\prime \prime}(8)=-\frac{2}{9} 8^{-5 / 3}<0
$$

Therefore, f is concave down at $x=8$ and the tangent line lies above the graph of f near $x=8$. Thus, the estimate in part (b) is an overestimate.

Consider the line $y=-\frac{7}{3} x+10$. Find the x-coordinate of the point (x, y) on the given line such that the sum of the squares of both coordinates (i.e. $x^{2}+y^{2}$) is minimized.

Solution: We want to minimize the function $x^{2}+y^{2}$ given the constraint $y=-\frac{7}{3} x+10$. Thus, we have

$$
\begin{aligned}
& f(x)=x^{2}+\left(-\frac{7}{3} x+10\right)^{2} \\
& f(x)=x^{2}+\frac{49}{9} x^{2}-\frac{140}{3} x+100 \\
& f(x)=\frac{58}{9} x^{2}-\frac{140}{3} x+100
\end{aligned}
$$

The critical points of f are solutions to $f^{\prime}(x)=0$:

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\frac{116}{9} x-\frac{140}{3} & =0 \\
\frac{116}{9} x & =\frac{140}{3} \\
x & =\frac{105}{29}
\end{aligned}
$$

The second derivative of f is $f^{\prime \prime}(x)=\frac{116}{9}>0$. Thus, f is concave up for all x and $x=\frac{105}{29}$ must correspond to an absolute minimum of f.

Let $f(x)=x e^{4 x}$ and consider the interval $[-3,0]$. Find the absolute maximum and absolute minimum values of the function on the interval.

Solution: To find the absolute extrema we evaluate f at the critical points in $(-3,0)$ and at the endpoints $-3,0$. The critical points of f are solutions to $f^{\prime}(x)=0$:

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
x \cdot \frac{d}{d x} e^{4 x}+e^{4 x} \cdot \frac{d}{d x} x & =0 \\
x \cdot 4 e^{4 x}+e^{4 x} \cdot 1 & =0 \\
e^{4 x}(4 x+1) & =0 \\
4 x+1 & =0 \\
x & =-\frac{1}{4}
\end{aligned}
$$

The value of f at $x=-3,-\frac{1}{4}, 0$ are:

$$
f(-3)=-3 e^{-12}, \quad f(-1 / 4)=(-1 / 4) e^{-1}, \quad f(0)=0
$$

The largest of the above values is 0 (absolute maximum) and the smallest is $(-1 / 4) e^{-1}$ (absolute minimum).

