Math 180, Exam 2, Practice Fall 2009 Problem 1 Solution

1. Differentiate the functions: (do not simplify)

$$
\begin{gathered}
f(x)=x \ln \left(x^{2}+1\right), \quad f(x)=x e^{\sqrt{x}} \\
f(x)=\arcsin (2 x+1)=\sin ^{-1}(3 x+1), \quad f(x)=\frac{e^{3 x}}{\ln x}
\end{gathered}
$$

Solution: For the first function, we use the Product and Chain Rules.

$$
\begin{aligned}
f^{\prime}(x) & =\left[x \ln \left(x^{2}+1\right)\right]^{\prime} \\
& =x\left[\ln \left(x^{2}+1\right)\right]^{\prime}+(x)^{\prime} \ln \left(x^{2}+1\right) \\
& =x \cdot \frac{1}{x^{2}+1} \cdot\left(x^{2}+1\right)^{\prime}+1 \cdot \ln \left(x^{2}+1\right) \\
& =x \cdot \frac{1}{x^{2}+1} \cdot 2 x+\ln \left(x^{2}+1\right) \\
& =\frac{2 x^{2}}{x^{2}+1}+\ln \left(x^{2}+1\right)
\end{aligned}
$$

For the second function, we use the Product and Chain Rules.

$$
\begin{aligned}
f^{\prime}(x) & =\left(x e^{\sqrt{x}}\right)^{\prime} \\
& =x\left(e^{\sqrt{x}}\right)^{\prime}+(x)^{\prime} e^{\sqrt{x}} \\
& =x \cdot e^{\sqrt{x}} \cdot(\sqrt{x})^{\prime}+1 \cdot e^{\sqrt{x}} \\
& =x \cdot e^{\sqrt{x}} \cdot \frac{1}{2 \sqrt{x}}+e^{\sqrt{x}} \\
& =\frac{1}{2} \sqrt{x} e^{\sqrt{x}}+e^{\sqrt{x}}
\end{aligned}
$$

For the third function, we use the Chain Rule.

$$
\begin{aligned}
f^{\prime}(x) & =\left[\sin ^{-1}(3 x+1)\right]^{\prime} \\
& =\frac{1}{\sqrt{1-(3 x+1)^{2}}} \cdot(3 x+1)^{\prime} \\
& =\frac{1}{\sqrt{1-(3 x+1)^{2}}} \cdot 3
\end{aligned}
$$

For the fourth function, we use the Quotient and Chain Rules.

$$
\begin{aligned}
f^{\prime}(x) & =\left(\frac{e^{3 x}}{\ln x}\right)^{\prime} \\
& =\frac{(\ln x)\left(e^{3 x}\right)^{\prime}-\left(e^{3 x}\right)(\ln x)^{\prime}}{(\ln x)^{2}} \\
& =\frac{(\ln x)\left(e^{3 x}\right)(3 x)^{\prime}-\left(e^{3 x}\right)\left(\frac{1}{x}\right)}{(\ln x)^{2}} \\
& =\frac{3 e^{3 x} \ln x-e^{3 x} \cdot \frac{1}{x}}{(\ln x)^{2}}
\end{aligned}
$$

Math 180, Exam 2, Practice Fall 2009 Problem 2 Solution

2. The following table of values is provided for the functions f, g, and their derivatives:

x	1	3
$f(x)$	2	4
$f^{\prime}(x)$	1	5
$g(x)$	3	-2
$g^{\prime}(x)$	2	-3

Let $h(x)=f(g(x))$ and compute $h^{\prime}(1)$.
Solution: Using the Chain Rule, the derivative of $h(x)$ is:

$$
h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

At $x=1$ we have:

$$
\begin{aligned}
h^{\prime}(1) & =f^{\prime}(g(1)) g^{\prime}(1) \\
& =f^{\prime}(3) g^{\prime}(1) \\
& =(5)(2) \\
& =10
\end{aligned}
$$

Math 180, Exam 2, Practice Fall 2009 Problem 3 Solution

3. Differentiate the following functions: (do not simplify)

$$
f(x)=\sin \left(x^{2}+5 x+2\right), \quad f(x)=\ln (x+\cos x), \quad f(x)=(1+\ln x)^{3 / 4}
$$

Solution: For the first function, we use the Chain Rule.

$$
\begin{aligned}
f^{\prime}(x) & =\left[\sin \left(x^{2}+5 x+2\right)\right]^{\prime} \\
& =\cos \left(x^{2}+5 x+2\right) \cdot\left(x^{2}+5 x+2\right)^{\prime} \\
& =\cos \left(x^{2}+5 x+2\right) \cdot(2 x+5)
\end{aligned}
$$

For the second function, we use the Chain Rule.

$$
\begin{aligned}
f^{\prime}(x) & =[\ln (x+\cos x)]^{\prime} \\
& =\frac{1}{x+\cos x} \cdot(x+\cos x)^{\prime} \\
& =\frac{1}{x+\cos x} \cdot(1-\sin x)
\end{aligned}
$$

For the third function, we use the Chain Rule.

$$
\begin{aligned}
f^{\prime}(x) & =\left[(1+\ln x)^{3 / 4}\right]^{\prime} \\
& =\frac{3}{4}(1+\ln x)^{-1 / 4} \cdot(1+\ln x)^{\prime} \\
& =\frac{3}{4}(1+\ln x)^{-1 / 4} \cdot \frac{1}{x}
\end{aligned}
$$

Math 180, Exam 2, Practice Fall 2009 Problem 4 Solution

4. Find the derivative of the function $y=x^{x}$.

Solution: To find the derivative we use logarithmic differentiation. We start by taking the natural logarithm of both sides of the equation.

$$
\begin{aligned}
y & =x^{x} \\
\ln y & =\ln x^{x} \\
\ln y & =x \ln x
\end{aligned}
$$

Then we implicitly differentiate the equation and solve for y^{\prime}.

$$
\begin{aligned}
(\ln y)^{\prime} & =(x \ln x)^{\prime} \\
\frac{1}{y} \cdot y^{\prime} & =x(\ln x)^{\prime}+(\ln x)(x)^{\prime} \\
\frac{1}{y} \cdot y^{\prime} & =x \cdot \frac{1}{x}+\ln x \cdot 1 \\
\frac{1}{y} \cdot y^{\prime} & =1+\ln x \\
y^{\prime} & =y(1+\ln x) \\
y^{\prime} & =x^{x}(1+\ln x)
\end{aligned}
$$

Math 180, Exam 2, Practice Fall 2009 Problem 5 Solution

5. The graph of a function $f(x)$ is given below. List the intervals on which f is increasing, decreasing, concave up, and concave down.

Solution: $f(x)$ is increasing on $(a, b) \cup(d, f)$ because $f^{\prime}(x)>0$ for these values of $x . f(x)$ is decreasing on (b, d) because $f^{\prime}(x)<0$ for these values of $x . f(x)$ is concave up on (c, e) because $f^{\prime}(x)$ is increasing for these values of $x . f(x)$ is concave down on $(a, c) \cup(e, f)$ because $f^{\prime}(x)$ is decreasing for these value of x.

Math 180, Exam 2, Practice Fall 2009 Problem 6 Solution

6. Find the equation of the tangent to the curve $y^{2} x+x+2 y=4$ at the point $(1,1)$.

Solution: We find y^{\prime} using implicit differentiation.

$$
\begin{aligned}
y^{2} x+x+2 y & =4 \\
\left(y^{2} x\right)^{\prime}+(x)^{\prime}+(2 y)^{\prime} & =(4)^{\prime} \\
{\left[\left(y^{2}\right)(x)^{\prime}+(x)\left(y^{2}\right)^{\prime}\right]+1+2 y^{\prime} } & =0 \\
{\left[\left(y^{2}\right)(1)+(x)\left(2 y y^{\prime}\right)\right]+1+2 y^{\prime} } & =0 \\
y^{2}+2 x y y^{\prime}+1+2 y^{\prime} & =0 \\
2 x y y^{\prime}+2 y^{\prime} & =-y^{2}-1 \\
y^{\prime}(2 x y+2) & =-y^{2}-1 \\
y^{\prime} & =\frac{-y^{2}-1}{2 x y+2}
\end{aligned}
$$

At the point $(1,1)$, the value of y^{\prime} is:

$$
y^{\prime}(1,1)=\frac{-1^{2}-1}{2(1)(1)+2}=-\frac{1}{2}
$$

This represents the slope of the tangent line. An equation for the tangent line is then:

$$
y-1=-\frac{1}{2}(x-1)
$$

Math 180, Exam 2, Practice Fall 2009
 Problem 7 Solution

7. Let $f(x)=x e^{x}$.
(a) Find and classify the critical points of f.
(b) Is there a global minimum of f over the entire real line? Why or why not?

Solution:

(a) The critical points of $f(x)$ are the values of x for which either $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist. Since $f(x)$ is a product of two infinitely differentiable functions, we know that $f^{\prime}(x)$ exists for all $x \in \mathbb{R}$. Therefore, the only critical points are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(x e^{x}\right)^{\prime} & =0 \\
(x)\left(e^{x}\right)^{\prime}+\left(e^{x}\right)(x)^{\prime} & =0 \\
x e^{x}+e^{x} & =0 \\
e^{x}(x+1) & =0 \\
x & =-1
\end{aligned}
$$

$x=-1$ is the only critical point because $e^{x}>0$ for all $x \in \mathbb{R}$.
We use the First Derivative Test to classify the critical point $x=-1$. The domain of f is $(-\infty, \infty)$. Therefore, we divide the domain into the two intervals $(-\infty,-1)$ and $(-1, \infty)$. We then evaluate $f^{\prime}(x)$ at a test point in each interval to determine where $f^{\prime}(x)$ is positive and negative.

Interval	Test Number, c	$f^{\prime}(c)$	Sign of $f^{\prime}(c)$
$(-\infty,-1)$	-2	$-e^{-2}$	-
$(-1, \infty)$	0	1	+

Since f changes sign from - to + at $x=-1$ the First Derivative Test implies that $f(-1)=-e^{-1}$ is a local minimum.
(b) From the table in part (a), we conclude that f is decreasing on the interval $(-\infty,-1)$ and increasing on the interval $(-1, \infty)$. Therefore, $f(-1)=-e^{-1}$ is the global minimum of f over the entire real line.

Math 180, Exam 2, Practice Fall 2009 Problem 8 Solution

8. Find the minimum and the maximum values of the function $f(x)=x^{3}-3 x$ over the interval $[0,2]$.

Solution: The minimum and maximum values of $f(x)$ will occur at a critical point in the interval $[0,2]$ or at one of the endpoints. The critical points are the values of x for which either $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist. Since $f(x)$ is a polynomial, $f^{\prime}(x)$ exists for all $x \in \mathbb{R}$. Therefore, the only critical points are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(x^{3}-3 x\right)^{\prime} & =0 \\
3 x^{2}-3 & =0 \\
3\left(x^{2}-1\right) & =0 \\
3(x+1)(x-1) & =0 \\
x=-1, x & =1
\end{aligned}
$$

The critical point $x=-1$ lies outside [0,2] but the critical point $x=1$ is in [0, 2]. Therefore, we check the value of $f(x)$ at $x=0,1$, and 2 .

$$
\begin{aligned}
& f(0)=0^{3}-3(0)=0 \\
& f(1)=1^{3}-3(1)=-2 \\
& f(2)=2^{3}-3(2)=2
\end{aligned}
$$

The minimum value of $f(x)$ on $[0,2]$ is -2 because it is the smallest of the above values of f. The maximum is 2 because it is the largest.

Math 180, Exam 2, Practice Fall 2009
 Problem 9 Solution

9. A function f is defined on $[0,2]$ by $f(x)=x^{2}+x+1$ for $0 \leq x \leq 2$. Let g be the inverse function of f. Find $g^{\prime}(3)$.

Solution: The value of $g^{\prime}(3)$ is given by the formula:

$$
g^{\prime}(3)=\frac{1}{f^{\prime}(g(3))}
$$

It isn't necessary to find a formula for $g(x)$ to find $g(3)$. We will use the fact that $f(1)=$ $1^{2}+1+1=3$ to say that $g(3)=1$ by the property of inverses. The derivative of $f(x)$ is $f^{\prime}(x)=2 x+1$. Therefore,

$$
\begin{aligned}
g^{\prime}(3) & =\frac{1}{f^{\prime}(g(3))} \\
& =\frac{1}{f^{\prime}(1)} \\
& =\frac{1}{2(1)+1} \\
& =\frac{1}{3}
\end{aligned}
$$

Math 180, Exam 2, Practice Fall 2009
 Problem 10 Solution

10. Find the limits
(a) $\lim _{x \rightarrow 0} \frac{1-\cos (3 x)}{x^{2}}$
(b) $\lim _{x \rightarrow \pi / 6} \frac{1-\cos (3 x)}{x^{2}}$

Solution:

(a) Upon substituting $x=0$ into the function $\frac{1-\cos (3 x)}{x^{2}}$ we get

$$
\frac{1-\cos (3(0))}{0^{2}}=\frac{0}{0}
$$

which is indeterminate. We resolve the indeterminacy using L'Hôpital's Rule.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos (3 x)}{x^{2}} \stackrel{\text { L'H }^{\prime}}{=} & \lim _{x \rightarrow 0} \frac{(1-\cos (3 x))^{\prime}}{\left(x^{2}\right)^{\prime}} \\
& =\lim _{x \rightarrow 0} \frac{3 \sin (3 x)}{2 x}
\end{aligned}
$$

Upon substituting $x=0$ into $\frac{3 \sin (3 x)}{2 x}$ we get

$$
\frac{3 \sin (3(0))}{2(0)}=\frac{0}{0}
$$

which is indeterminate. We resolve this indeterminacy using another application of L'Hôpital's Rule.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos (3 x)}{x^{2}} & =\lim _{x \rightarrow 0} \frac{3 \sin (3 x)}{2 x} \\
& \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \frac{(3 \sin (3 x))^{\prime}}{(2 x)^{\prime}} \\
& =\lim _{x \rightarrow 0} \frac{9 \cos (3 x)}{2} \\
& =\frac{9}{2}
\end{aligned}
$$

(b) Upon substituting $x=\frac{\pi}{6}$ into the function $\frac{1-\cos (3 x)}{x^{2}}$ we get

$$
\frac{1-\cos \left(3\left(\frac{\pi}{6}\right)\right)}{\left(\frac{\pi}{6}\right)^{2}}=\frac{1-0}{\left(\frac{\pi}{6}\right)^{2}}=\frac{36}{\pi^{2}}
$$

Therefore, the value of the limit is:

$$
\lim _{x \rightarrow \pi / 6} \frac{1-\cos (3 x)}{x^{2}}=\frac{36}{\pi^{2}}
$$

Substitution works in this problem because the function is continuous at $x=\frac{\pi}{6}$.

Math 180, Exam 2, Practice Fall 2009
 Problem 11 Solution

11. Find $\lim _{x \rightarrow 0^{+}} x \ln x$.

Solution: As $x \rightarrow 0^{+}$we find that $x \ln x \rightarrow 0 \cdot(-\infty)$ which is indeterminate. However, it is not of the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$ which is required to use L'Hôpital's Rule. To get the limit into one of the two required forms, we rewrite $x \ln x$ as follows:

$$
x \ln x=\frac{\ln x}{\frac{1}{x}}
$$

As $x \rightarrow 0^{+}$, we find that $\frac{\ln x}{1 / x} \rightarrow \frac{-\infty}{\infty}$. We can now use L'Hôpital's Rule.

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x \ln x & =\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x}} \\
& \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \lim _{x \rightarrow 0^{+}} \frac{(\ln x)^{\prime}}{\left(\frac{1}{x}\right)^{\prime}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow 0^{+}}-x \\
& =0
\end{aligned}
$$

Math 180, Exam 2, Practice Fall 2009
 Problem 12 Solution

12. Find the critical points of the function $f(x)=x^{3}+x^{2}-x+5$ and determine if they correspond to local maxima, minima, or neither.

Solution: The critical points of $f(x)$ are the values of x for which either $f^{\prime}(x)$ does not exist or $f^{\prime}(x)=0$. Since $f(x)$ is a polynomial, $f^{\prime}(x)$ exists for all $x \in \mathbb{R}$ so the only critical points are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(x^{3}+x^{2}-x+5\right)^{\prime} & =0 \\
3 x^{2}+2 x-1 & =0 \\
(3 x-1)(x+1) & =0 \\
x=\frac{1}{3}, x & =-1
\end{aligned}
$$

Thus, $x=-1$ and $x=\frac{1}{3}$ are the critical points of f. We will use the Second Derivative Test to classify the points as either local maxima or a local minima. The second derivative is $f^{\prime \prime}(x)=6 x+2$. The values of $f^{\prime \prime}(x)$ at the critical points are:

$$
\begin{aligned}
f^{\prime \prime}(-1) & =6(-1)+2=-4 \\
f^{\prime \prime}\left(\frac{1}{3}\right) & =6\left(\frac{1}{3}\right)+2=4
\end{aligned}
$$

Since $f^{\prime \prime}(-1)<0$ the Second Derivative Test implies that $f(-1)=6$ is a local maximum and since $f^{\prime \prime}\left(\frac{1}{3}\right)>0$ the Second Derivative Test implies that $f\left(\frac{1}{3}\right)=\frac{130}{27}$ is a local minimum.

Math 180, Exam 2, Practice Fall 2009
 Problem 13 Solution

13. Let $f(x)=x^{4}+2 x^{2}$. Determine the intervals on which f is increasing or decreasing and on which f is concave up or down.

Solution: We begin by finding the critical points of $f(x)$. These occur when either $f^{\prime}(x)$ does not exist or $f^{\prime}(x)=0$. Since $f(x)$ is a polynomial we know that $f^{\prime}(x)$ exists for all $x \in \mathbb{R}$. Therefore, the only critical points are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(x^{4}+2 x^{2}\right)^{\prime} & =0 \\
4 x^{3}+4 x & =0 \\
4 x\left(x^{2}+1\right) & =0 \\
x & =0
\end{aligned}
$$

The domain of $f(x)$ is $(-\infty, \infty)$. We now split the domain into the two intervals $(-\infty, 0)$ and $(0, \infty)$. We then evaluate $f^{\prime}(x)$ at a test point in each interval to determine the intervals of monotonicity.

Interval	Test Point, c	$f^{\prime}(c)$	Sign of $f^{\prime}(c)$
$(-\infty, 0)$	-1	$f^{\prime}(-1)=-8$	-
$(0, \infty)$	1	$f^{\prime}(1)=8$	+

Using the table we conclude that $f(x)$ is increasing on $(0, \infty)$ because $f^{\prime}(x)>0$ for all $x \in(0, \infty)$ and $f(x)$ is decreasing on $(-\infty, 0)$ because $f^{\prime}(x)<0$ for all $x \in(-\infty, 0)$.

To find the intervals of concavity we begin by finding solutions to $f^{\prime \prime}(x)=0$.

$$
\begin{aligned}
f^{\prime \prime}(x) & =0 \\
\left(4 x^{4}+4 x\right)^{\prime} & =0 \\
12 x^{2}+4 & =0
\end{aligned}
$$

This equations has no solutions. In fact, $f^{\prime \prime}(x)=12 x^{2}+4>0$ for all $x \in \mathbb{R}$. Therefore, the function $f(x)$ is concave up on $(-\infty, \infty)$.

Math 180, Exam 2, Practice Fall 2009
 Problem 14 Solution

14. Let $f(x)=2 x^{3}+3 x^{2}-12 x+1$.
(a) Find the critical points of f.
(b) Find the intervals on which f is increasing and the intervals on which f is decreasing.
(c) Find the local minima and maxima of f. Compute x and $f(x)$ for each local extremum.
(d) Determine the intervals on which f is concave up and the intervals on which f is concave down.
(e) Find the points of inflection of f.
(f) Sketch the graph of f.

Solution:

(a) The critical points of $f(x)$ are the values of x for which either $f^{\prime}(x)$ does not exist or $f^{\prime}(x)=0$. Since $f(x)$ is a polynomial, $f^{\prime}(x)$ exists for all $x \in \mathbb{R}$ so the only critical points are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(2 x^{3}+3 x^{2}-12 x+1\right)^{\prime} & =0 \\
6 x^{2}+6 x-12 & =0 \\
6\left(x^{2}+x-2\right) & =0 \\
6(x+2)(x-1) & =0 \\
x=-2, x & =1
\end{aligned}
$$

Thus, $x=-2$ and $x=1$ are the critical points of f.
(b) The domain of f is $(-\infty, \infty)$. We now split the domain into the three intervals $(-\infty,-2),(-2,1)$, and $(1, \infty)$. We then evaluate $f^{\prime}(x)$ at a test point in each interval to determine the intervals of monotonicity.

Interval	Test Point, c	$f^{\prime}(c)$	Sign of $f^{\prime}(c)$
$(-\infty,-2)$	-3	$f^{\prime}(-3)=24$	+
$(-2,1)$	0	$f^{\prime}(0)=-12$	-
$(1, \infty)$	2	$f^{\prime}(2)=24$	+

Using the table, we conclude that f is increasing on $(-\infty,-2) \cup(1, \infty)$ because $f^{\prime}(x)>$ 0 for all $x \in(-\infty,-2) \cup(1, \infty)$ and f is decreasing on $(-2,1)$ because $f^{\prime}(x)<0$ for all $x \in(-2,1)$.
(c) Since f^{\prime} changes sign from + to - at $x=-2$ the First Derivative Test implies that $f(-2)=21$ is a local maximum and since f^{\prime} changes sign from - to + at $x=1$ the First Derivative Test implies that $f(1)=-6$ is a local minimum.
(d) To determine the intervals of concavity we start by finding solutions to the equation $f^{\prime \prime}(x)=0$ and where $f^{\prime \prime}(x)$ does not exist. However, since $f(x)$ is a polynomial we know that $f^{\prime \prime}(x)$ will exist for all $x \in \mathbb{R}$. The solutions to $f^{\prime \prime}(x)=0$ are:

$$
\begin{aligned}
f^{\prime \prime}(x) & =0 \\
\left(6 x^{2}+6 x-12\right)^{\prime} & =0 \\
12 x+6 & =0 \\
x & =-\frac{1}{2}
\end{aligned}
$$

We now split the domain into the two intervals $\left(-\infty,-\frac{1}{2}\right)$ and $\left(-\frac{1}{2}, \infty\right)$. We then evaluate $f^{\prime \prime}(x)$ at a test point in each interval to determine the intervals of concavity.

Interval	Test Point, c	$f^{\prime}(c)$	Sign of $f^{\prime}(c)$
$\left(-\infty,-\frac{1}{2}\right)$	-1	$f^{\prime \prime}(-1)=-6$	-
$\left(-\frac{1}{2}, \infty\right)$	0	$f^{\prime \prime}(0)=6$	+

Using the table, we conclude that f is concave down on $\left(-\infty,-\frac{1}{2}\right)$ because $f^{\prime \prime}(x)<0$ for all $x \in\left(-\infty,-\frac{1}{2}\right)$ and f is concave up on $\left(-\frac{1}{2}, \infty\right)$ because $f^{\prime \prime}(x)>0$ for all $x \in\left(-\frac{1}{2}, \infty\right)$.
(e) The inflection points of $f(x)$ are the points where $f^{\prime \prime}(x)$ changes sign. We can see in the above table that $f^{\prime \prime}(x)$ changes sign at $x=-\frac{1}{2}$. Therefore, $x=-\frac{1}{2}$ is an inflection point.

(f)

Math 180, Exam 2, Practice Fall 2009 Problem 15 Solution

15. Use the Newton approximation method to estimate the positive root of the equation $x^{2}-2=0$. Begin with $x_{0}=2$ and compute x_{1}. Present your answer as a fraction with integer numerator and denominator.

Solution: The Newton's method formula to compute x_{1} is

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

where $f(x)=x^{2}-2$. The derivative $f^{\prime}(x)$ is $f^{\prime}(x)=2 x$. Plugging $x_{0}=2$ into the formula we get:

$$
\begin{aligned}
& x_{1}=x_{0}-\frac{x_{0}^{2}-2}{2 x_{0}} \\
& x_{1}=2-\frac{2^{2}-2}{2(2)} \\
& x_{1}=2-\frac{2}{4} \\
& x_{1}=\frac{3}{2}
\end{aligned}
$$

Math 180, Exam 2, Practice Fall 2009
 Problem 16 Solution

16. A rectangle has its left lower corner at $(0,0)$ and its upper right corner on the graph of

$$
f(x)=x^{2}+\frac{1}{x^{2}}
$$

(a) Express its area as a function of x.
(b) For which x is the area minimum and what is this area?

Solution:

(a) The dimensions of the rectangle are x and y. Therefore, the area of the rectangle has the equation:

$$
\begin{equation*}
\text { Area }=x y \tag{1}
\end{equation*}
$$

We are asked to write the area as a function of x alone. Therefore, we must find an equation that relates x to y so that we can eliminate y from the area equation. This equation is

$$
\begin{equation*}
y=x^{2}+\frac{1}{x^{2}} \tag{2}
\end{equation*}
$$

because (x, y) must lie on this curve. Plugging this into the area equation we get:

$$
\begin{aligned}
& \text { Area }=x\left(x^{2}+\frac{1}{x^{2}}\right) \\
& g(x)=x^{3}+\frac{1}{x}
\end{aligned}
$$

(b) We seek the value of x that minimizes $g(x)$. The interval in the problem is $(0, \infty)$ because the domain of $f(x)$ is $(-\infty, 0) \cup(0, \infty)$ but (x, y) must be in the first quadrant.

The absolute minimum of $f(x)$ will occur either at a critical point of $f(x)$ in $(0, \infty)$ or it will not exist because the interval is open. The critical points of $f(x)$ are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(x^{3}+\frac{1}{x}\right)^{\prime} & =0 \\
3 x^{2}-\frac{1}{x^{2}} & =0 \\
3 x^{4}-1 & =0 \\
x & = \pm \frac{1}{\sqrt[4]{3}}
\end{aligned}
$$

However, since $x=-\frac{1}{\sqrt[4]{3}}$ is outside $(0, \infty)$, the only critical point is $x=\frac{1}{\sqrt[4]{3}}$. Plugging this into $g(x)$ we get:

$$
f\left(\frac{1}{\sqrt[4]{3}}\right)=\left(\frac{1}{\sqrt[4]{3}}\right)^{3}+\frac{1}{\frac{1}{\sqrt[4]{3}}}=\frac{1}{\sqrt[4]{27}}+\sqrt[4]{3}
$$

Taking the limits of $f(x)$ as x approaches the endpoints we get:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{+}}\left(x^{3}+\frac{1}{x}\right)=0+\infty=\infty \\
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty}\left(x^{3}+\frac{1}{x}\right)=\infty+0=\infty
\end{aligned}
$$

both of which are larger than $\frac{1}{\sqrt[4]{27}}+\sqrt[4]{3}$. We conclude that the area is an absolute minimum at $x=\frac{1}{\sqrt[4]{3}}$ and that the resulting area is $\frac{1}{\sqrt[4]{27}}+\sqrt[4]{3}$.

Math 180, Exam 2, Practice Fall 2009
 Problem 17 Solution

17. A box has square base and total surface area equal to $12 \mathrm{~m}^{2}$.
(a) Express its volume as a function of x, the length of one side of the base.
(b) Find the maximum volume of such a box.

Solution:

(a) We begin by letting x be the length of one side of the base and y be the height of the box. The volume then has the equation:

$$
\begin{equation*}
\text { Volume }=x^{2} y \tag{1}
\end{equation*}
$$

We are asked to write the volume as a function of width, x. Therefore, we must find an equation that relates x to y so that we can eliminate y from the volume equation.

The constraint in the problem is that the total surface area is 12 . This gives us the equation

$$
\begin{equation*}
2 x^{2}+4 x y=12 \tag{2}
\end{equation*}
$$

Solving this equation for y we get

$$
\begin{align*}
2 x^{2}+4 x y & =12 \\
x^{2}+2 x y & =6 \\
y & =\frac{6-x^{2}}{2 x} \tag{3}
\end{align*}
$$

We then plug this into the volume equation (1) to write the volume in terms of x only.

$$
\begin{align*}
& \text { Volume }=x^{2} y \\
& \text { Volume }=x^{2}\left(\frac{6-x^{2}}{2 x}\right) \\
& \qquad f(x)=3 x-\frac{1}{2} x^{3} \tag{4}
\end{align*}
$$

(b) We seek the value of x that maximizes $f(x)$. The interval in the problem is $(0, \sqrt{6}]$. We know that $x>0$ because x must be positive and nonzero (otherwise, the surface area would be 0 and it must be 12). It is possible that $y=0$ in which case the surface area constraint would give us $2 x^{2}+4 x(0)=12 \Rightarrow x^{2}=6 \Rightarrow x=\sqrt{6}$.

The absolute maximum of $f(x)$ will occur either at a critical point of $f(x)$ in $(0, \sqrt{6}]$, at $x=\sqrt{6}$, or it will not exist. The critical points of $f(x)$ are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(3 x-\frac{1}{2} x^{3}\right)^{\prime} & =0 \\
3-\frac{3}{2} x^{2} & =0 \\
x^{2} & =2 \\
x & = \pm \sqrt{2}
\end{aligned}
$$

However, since $x=-\sqrt{2}$ is outside $(0, \sqrt{6}]$, the only critical point is $x=\sqrt{2}$. Plugging this into $f(x)$ we get:

$$
f(\sqrt{2})=3(\sqrt{2})-\frac{1}{2}(\sqrt{2})^{3}=2 \sqrt{2}
$$

Evaluating $f(x)$ at $x=\sqrt{6}$ and taking the limit of $f(x)$ as x approaches $x=0$ we get:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{+}}\left(3 x-\frac{1}{2} x^{3}\right)=0 \\
f(\sqrt{6}) & =3(\sqrt{6})-\frac{1}{2}(\sqrt{6})^{3}=0
\end{aligned}
$$

both of which are smaller than $2 \sqrt{2}$. We conclude that the volume is an absolute maximum at $x=\sqrt{2}$ and that the resulting volume is $2 \sqrt{2} \mathrm{~m}^{3}$.

Math 180, Exam 2, Practice Fall 2009
 Problem 18 Solution

18. You plan to build a wall enclosing a rectangular garden area of 20,000 square meters. There is a river on the one side, the wall will be built along the other 3 sides. Determine the dimensions that will minimize the length of the wall.

Solution: We begin by letting x be the length of the side opposite the river and y be the lengths of the remaining two sides. The function we seek to minimize is the length of the wall:

Function: \quad Length $=x+2 y$
The constraint in this problem is that the area of the garden is 20,000 square meters.
Constraint : $\quad x y=20,000$
Solving the constraint equation (2) for y we get:

$$
\begin{equation*}
y=\frac{20,000}{x} \tag{3}
\end{equation*}
$$

Plugging this into the function (1) and simplifying we get:

$$
\begin{aligned}
\text { Length } & =x+2\left(\frac{20,000}{x}\right) \\
f(x) & =x+\frac{40,000}{x}
\end{aligned}
$$

We want to find the absolute minimum of $f(x)$ on the interval $(0, \infty)$. We choose this interval because x must be nonnegative (x represents a length) and non-zero (if x were 0 , then the area would be 0 but it must be 20,000).

The absolute minimum of $f(x)$ will occur either at a critical point of $f(x)$ in $(0, \infty)$ or it will not exist because the interval is open. The critical points of $f(x)$ are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(x+\frac{40,000}{x}\right)^{\prime} & =0 \\
1-\frac{40,000}{x^{2}} & =0 \\
x^{2} & =40,000 \\
x & = \pm 200
\end{aligned}
$$

However, since $x=-200$ is outside $(0, \infty)$, the only critical point is $x=200$. Plugging this into $f(x)$ we get:

$$
f(200)=200+\frac{40,000}{200}=400
$$

Taking the limits of $f(x)$ as x approaches the endpoints we get:

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left(x+\frac{40,000}{x}\right)=0+\infty=\infty \\
& \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty}\left(x+\frac{40,000}{x}\right)=\infty+0=\infty
\end{aligned}
$$

both of which are larger than 400 . We conclude that the length is an absolute minimum at $x=200$ and that the resulting length is 400 . The last step is to find the corresponding value for y by plugging $x=200$ into equation (3).

$$
y=\frac{20,000}{x}=\frac{20,000}{200}=100
$$

Math 180, Exam 2, Practice Fall 2009
 Problem 19 Solution

19. Find the linearization of the function $f(x)=\frac{1}{x^{2}+1}$ at the point $a=1$.

Solution: The linearization $L(x)$ of the function $f(x)$ at $x=1$ is defined as:

$$
L(x)=f(1)+f^{\prime}(1)(x-1)
$$

The derivative $f^{\prime}(x)$ is found using the Chain Rule:

$$
\begin{aligned}
& f^{\prime}(x)=-\frac{1}{\left(x^{2}+1\right)^{2}} \cdot\left(x^{2}+1\right)^{\prime} \\
& f^{\prime}(x)=-\frac{2 x}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

For $a=1$, the values of f^{\prime} and f are:

$$
\begin{aligned}
f^{\prime}(1) & =-\frac{2(1)}{\left(1^{2}+1\right)^{2}}=-\frac{1}{2} \\
f(1) & =\frac{1}{1^{2}+1}=\frac{1}{2}
\end{aligned}
$$

Therefore, the linearization $L(x)$ is:

$$
L(x)=\frac{1}{2}-\frac{1}{2}(x-1)
$$

Math 180, Exam 2, Practice Fall 2009
 Problem 20 Solution

20. Find antiderivatives of the functions:
(a) $f(x)=3 x^{2}-2 x$
(b) $f(x)=e^{3 x}$
(c) $f(x)=\frac{2}{x^{2}}$
(d) $f(x)=\cos (2 x)$

Solution:

(a) Using the linearity and power rules we have:

$$
\begin{aligned}
\int f(x) d x & =\int\left(3 x^{2}-2 x\right) d x \\
& =3 \int x^{2} d x-2 \int x d x \\
& =3\left(\frac{1}{3} x^{3}\right)-2\left(\frac{1}{2} x^{2}\right)+C \\
& =x^{3}-x^{2}+C
\end{aligned}
$$

(b) Using the rule $\int e^{k x} d x=\frac{1}{k} e^{k x}+C$ with $k=3$, we have:

$$
\begin{aligned}
\int f(x) d x & =\int e^{3 x} d x \\
& =\frac{1}{3} e^{3 x}+C
\end{aligned}
$$

(c) Using the linearity and power rules we have:

$$
\begin{aligned}
\int f(x) d x & =\int \frac{2}{x^{2}} d x \\
& =2 \int x^{-2} d x \\
& =2\left(\frac{x^{-1}}{-1}\right)+C \\
& =-\frac{2}{x}+C
\end{aligned}
$$

(d) Using the rule $\int \sin (k x) d x=-\frac{1}{k} \cos (k x)+C$ with $k=2$ we have:

$$
\begin{aligned}
\int f(x) d x & =\int \cos (2 x) d x \\
& =\frac{1}{2} \sin (2 x)+C
\end{aligned}
$$

