Math 180, Exam 2, Spring 2009
 Problem 1 Solution

1. Compute the derivative of the following functions:
(a) $f(x)=x \ln \left(x^{2}+1\right)$
(b) $g(x)=\cos \left(x e^{x}\right)$
(c) $h(x)=\tan ^{-1}(2 x+1)$

Solution:

(a) Use the Product and Chain Rules.

$$
\begin{aligned}
f^{\prime}(x) & =x\left[\ln \left(x^{2}+1\right)\right]^{\prime}+(x)^{\prime} \ln \left(x^{2}+1\right) \\
& =x \cdot \frac{1}{x^{2}+1} \cdot\left(x^{2}+1\right)^{\prime}+1 \cdot \ln \left(x^{2}+1\right) \\
& =x \cdot \frac{1}{x^{2}+1} \cdot 2 x+\ln \left(x^{2}+1\right) \\
& =\frac{2 x^{2}}{x^{2}+1}+\ln \left(x^{2}+1\right)
\end{aligned}
$$

(b) Use the Chain and Product Rules.

$$
\begin{aligned}
g^{\prime}(x) & =-\sin \left(x e^{x}\right) \cdot\left(x e^{x}\right)^{\prime} \\
& =-\sin \left(x e^{x}\right) \cdot\left[x\left(e^{x}\right)^{\prime}+(x)^{\prime} e^{x}\right] \\
& =-\sin \left(x e^{x}\right) \cdot\left(x e^{x}+e^{x}\right)
\end{aligned}
$$

(c) Use the Chain Rule.

$$
\begin{aligned}
h^{\prime}(x) & =\frac{1}{1+(2 x+1)^{2}} \cdot(2 x+1)^{\prime} \\
& =\frac{1}{1+(2 x+1)^{2}} \cdot 2
\end{aligned}
$$

Math 180, Exam 2, Spring 2009
 Problem 2 Solution

2. Use L'Hôpital's Rule to compute the limit:

$$
\lim _{x \rightarrow \infty} \frac{\ln \left(x^{2}+1\right)}{x+\sqrt{x}}
$$

Solution: As $x \rightarrow \infty$, the function $\frac{\ln \left(x^{2}+1\right)}{x+\sqrt{x}} \rightarrow \frac{\infty}{\infty}$ which is indeterminate. We resolve the indeterminacy using L'Hôpital's Rule.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\ln \left(x^{2}+1\right)}{x+\sqrt{x}} \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow \infty} \frac{\left(\ln \left(x^{2}+1\right)\right)^{\prime}}{(x+\sqrt{x})^{\prime}} \\
&=\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{2}+1} \cdot 2 x}{1+\frac{1}{2 \sqrt{x}}} \\
&=\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{2}+1} \cdot 2 x}{1+\frac{1}{2 \sqrt{x}}} \cdot \frac{2 \sqrt{x}\left(x^{2}+1\right)}{2 \sqrt{x}\left(x^{2}+1\right)} \\
&=\lim _{x \rightarrow \infty} \frac{4 x \sqrt{x}}{(2 \sqrt{x}+1)\left(x^{2}+1\right)} \\
&=\lim _{x \rightarrow \infty} \frac{4 x^{3 / 2}}{2 x^{5 / 2}+x^{2}+2 x^{1 / 2}+1} \\
&=\lim _{x \rightarrow \infty} \frac{4 x^{3 / 2}}{2 x^{5 / 2}} \\
&=\lim _{x \rightarrow \infty} \frac{2}{x} \\
&=0
\end{aligned}
$$

Math 180, Exam 2, Spring 2009
 Problem 3 Solution

3. Consider the curve defined implicitly by $x^{3}+y^{3}-9 x y=0$.
(a) Show that the point $(2,4)$ lies on the curve.
(b) Find an equation for the line tangent to the curve at $(2,4)$.

Solution:

(a) To show that the point $(2,4)$ lies on the curve, plug these values for x and y into the equation.

$$
\begin{aligned}
x^{3}+y^{3}-9 x y & =0 \\
2^{3}+4^{3}-9(2)(4) & =0 \\
8+64-72 & =0 \\
0 & =0
\end{aligned}
$$

Since we get $0=0$, the point lies on the curve.
(b) To find the slope of the tangent line, use implicit differentiation to find y^{\prime}.

$$
\begin{aligned}
x^{3}+y^{3}-9 x y & =0 \\
\left(x^{3}\right)^{\prime}+\left(y^{3}\right)^{\prime}-(9 x y)^{\prime} & =(0)^{\prime} \\
3 x^{2}+3 y^{2} y^{\prime}-\left[(9 x)(y)^{\prime}+(y)(9 x)^{\prime}\right] & =0 \\
3 x^{2}+3 y^{2} y^{\prime}-\left[9 x y^{\prime}+9 y\right] & =0 \\
3 y^{2} y^{\prime}-9 x y^{\prime} & =-3 x^{2}+9 y \\
y^{\prime}\left(3 y^{2}-9 x\right) & =-3 x^{2}+9 y \\
y^{\prime} & =\frac{-3 x^{2}+9 y}{3 y^{2}-9 x} \\
y^{\prime} & =\frac{-x^{2}+3 y}{y^{2}-3 x}
\end{aligned}
$$

At the point $(2,4)$, the value of y^{\prime} is:

$$
y^{\prime}(2,4)=\frac{-2^{2}+3(4)}{4^{2}-3(2)}=\frac{4}{5}
$$

An equation for the tangent line is then:

$$
y-4=\frac{4}{5}(x-2)
$$

Math 180, Exam 2, Spring 2009
 Problem 4 Solution

4. Let $f(x)=x^{3}+3 x^{2}-9 x+5$.
(a) Find the critical points of f and classify each as a local minimum, a local maximum, or neither.
(b) On what interval(s) is f concave down?
(c) Find the absolute minimum of f over the interval $[-2,1]$.

Solution:

(a) The critical points of $f(x)$ are the values of x for which either $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist. Since $f(x)$ is a polynomial, $f^{\prime}(x)$ exists for all $x \in \mathbb{R}$. Therefore, the only critical points are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(x^{3}+3 x^{2}-9 x+5\right)^{\prime} & =0 \\
3 x^{2}+6 x-9 & =0 \\
3\left(x^{2}+2 x-3\right) & =0 \\
3(x+3)(x-1) & =0 \\
x=-3, x & =1
\end{aligned}
$$

We use the Second Derivative Test to classify the critical points $x=-3$ and $x=1$. The second derivative is $f^{\prime \prime}(x)=6 x+6$. At the critical points, we have:

$$
\begin{aligned}
f^{\prime \prime}(-3) & =6(-3)+6=-12 \\
f^{\prime \prime}(1) & =6(1)+6=12
\end{aligned}
$$

Since $f^{\prime \prime}(-3)<0$ the Second Derivative Test implies that $f(-3)=32$ is a local maximum. Since $f^{\prime \prime}(1)>0$ the Second Derivative Test implies that $f(1)=0$ is a local minimum.
(b) A function $f(x)$ is concave down on (a, b) when $f^{\prime \prime}(x)<0$ for all $x \in(a, b)$. To find the interval(s) where f is concave down, we must first determine the value(s) of x for which $f^{\prime \prime}(x)=0$.

$$
\begin{aligned}
f^{\prime \prime}(x) & =0 \\
\left(3 x^{2}+6 x-9\right)^{\prime} & =0 \\
6 x+6 & =0 \\
x & =-1
\end{aligned}
$$

Since the domain of f is $(-\infty, \infty)$, we divide the domain into the two intervals $(-\infty,-1)$ and $(-1, \infty)$. We now evaluate $f^{\prime \prime}$ at test points in each interval to determine where $f^{\prime \prime}(x)$ is positive and negative.

Interval	Test Number, c	$f^{\prime \prime}(c)$	Sign of $f^{\prime \prime}(c)$
$(-\infty,-1)$	-2	-6	-
$(-1, \infty)$	0	6	+

Since $f^{\prime \prime}(-2)=-6<0$, we know that f is concave down on the interval $(-\infty,-1)$.
(c) The absolute minimum of f will occur either at a critical point in $[-2,1]$ or at one of the endpoints. From part (a), we found that the critical points of f are $x=-3$ and $x=1$. The point $x=-3$ is outside the interval and $x=1$ is an endpoint. Therefore, we only evaluate f at $x=-2$ and $x=1$.

$$
\begin{aligned}
f(-2) & =(-2)^{3}+3(-2)^{2}-9(-2)+5=27 \\
f(1) & =1^{3}+3(1)^{2}-9(1)+5=0
\end{aligned}
$$

The absolute minimum of f on $[-2,1]$ is 0 because it is the smallest of the values of f above.

Math 180, Exam 2, Spring 2009
 Problem 5 Solution

5. The sum of two nonnegative numbers is 36 . Find the numbers if the sum of their square roots is to be as large as possible.

Solution: We begin by letting x and y be the numbers in question. The function we seek to minimize is:

Function: \quad sum $=\sqrt{x}+\sqrt{y}$
The constraint in this problem is that the sum of x and y must be 36 .
Constraint : $\quad x+y=36$
Solving the constraint equation (2) for y we get:

$$
\begin{equation*}
y=36-x \tag{3}
\end{equation*}
$$

Plugging this into the function (1) we get:

$$
\begin{aligned}
& \text { sum }=\sqrt{x}+\sqrt{36-x} \\
& f(x)=\sqrt{x}+\sqrt{36-x}
\end{aligned}
$$

We want to find the absolute maximum of $f(x)$ on the interval $[0,36]$. We choose this interval because x must be nonnegative $(0 \leq x)$ and the sum of x and y must be $36(x \leq 36)$.

The absolute minimum of $f(x)$ will occur either at a critical point of $f(x)$ in $[0,36]$ or at one of the endpoints. The critical points of $f(x)$ are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\frac{1}{2 \sqrt{x}}-\frac{1}{2 \sqrt{36-x}} & =0 \\
\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{36-x}} & =0 \\
\frac{1}{\sqrt{x}} & =\frac{1}{\sqrt{36-x}} \\
\sqrt{36-x} & =\sqrt{x} \\
36-x & =x \\
2 x & =36 \\
x & =18
\end{aligned}
$$

Plugging this into $f(x)$ we get:

$$
f(18)=\sqrt{18}+\sqrt{36-18}=6 \sqrt{2}
$$

Evaluating $f(x)$ at the endpoints $x=0$ and $x=36$ we get:

$$
\begin{aligned}
f(0) & =\sqrt{0}+\sqrt{36-0}=6 \\
f(36) & =\sqrt{36}+\sqrt{36-36}=6
\end{aligned}
$$

both of which are smaller than $6 \sqrt{2}$. We conclude that the sum is an absolute maximum at $x=18$ and that the resulting cost is $6 \sqrt{2}$. The last step is to find the corresponding value for y by plugging $x=18$ into equation (3).

$$
y=36-18=18
$$

