Math 180, Exam 2, Spring 2010 Problem 1 Solution

1. Compute the indefinite integrals:
(a) $\int\left(x^{3}-4 x^{2}+3 x+5\right) d x$
(b) $\int \sqrt{x}\left(x^{2}-1\right) d x$

Solution:

(a) Using the linearity and power rules we have:

$$
\begin{aligned}
\int\left(x^{3}-4 x^{2}+3 x+5\right) d x & =\int x^{3} d x-4 \int x^{2} d x+3 \int x d x+5 \int d x \\
& =\frac{1}{4} x^{3}-4\left(\frac{1}{3} x^{3}\right)+3\left(\frac{1}{2} x^{2}\right)+5(x)+C \\
& =\frac{1}{4} x^{4}-\frac{4}{3} x^{3}+\frac{3}{2} x^{2}+5 x+C
\end{aligned}
$$

(b) Using some algebra and the linearity and power rules we have:

$$
\begin{aligned}
\int \sqrt{x}\left(x^{2}-1\right) d x & =\int\left(x^{5 / 2}-x^{1 / 2}\right) d x \\
& =\int x^{5 / 2} d x-\int x^{1 / 2} d x \\
& =\frac{2}{7} x^{7 / 2}-\frac{2}{3} x^{3 / 2}+C
\end{aligned}
$$

Math 180, Exam 2, Spring 2010 Problem 2 Solution

2. Use L'Hôpital's Rule to compute $\lim _{x \rightarrow 0} \frac{e^{7 x}-1}{e^{3 x}-1}$.

Solution: Upon substituting $x=0$ into the function $\frac{e^{7 x}-1}{e^{3 x}-1}$ we get

$$
\frac{e^{7(0)}-1}{e^{3(0)}-1}=\frac{0}{0}
$$

which is indeterminate. We resolve the indeterminacy using L'Hôpital's Rule.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{e^{7 x}-1}{e^{3 x}-1} & \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow 0} \frac{\left(e^{7 x}-1\right)^{\prime}}{\left(e^{3 x}-1\right)^{\prime}} \\
& =\lim _{x \rightarrow 0} \frac{7 e^{7 x}}{3 e^{3 x}} \\
& =\frac{7 e^{7(0)}}{3 e^{3(0)}} \\
& =\frac{7}{3}
\end{aligned}
$$

Math 180, Exam 2, Spring 2010
 Problem 3 Solution

3. Let $f(x)=x^{3}-2 x^{2}+x$.
(a) Find the critical point(s) of f and classify each as a local maximum, local minimum, or neither. Determine the intervals of monotonicity of f.
(b) Find the inflection point(s) of f. Determine the intervals where f is concave up and concave down.
(c) Sketch the graph $y=f(x)$, labeling the critical points and inflection points.

Solution:

(a) The critical points of $f(x)$ are the values of x for which either $f^{\prime}(x)$ does not exist or $f^{\prime}(x)=0$. Since $f(x)$ is a polynomial, $f^{\prime}(x)$ exists for all $x \in \mathbb{R}$ so the only critical points are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(x^{3}-2 x^{2}+x\right)^{\prime} & =0 \\
3 x^{2}-4 x+1 & =0 \\
(3 x-1)(x-1) & =0 \\
x=\frac{1}{3}, x & =1
\end{aligned}
$$

Thus, $x=\frac{1}{3}$ and $x=1$ are the critical points of f.
We will use the First Derivative Test to classify the critical points. The domain of f is $(-\infty, \infty)$. We now split the domain into the three intervals $\left(-\infty, \frac{1}{3}\right),\left(\frac{1}{3}, 1\right)$, and $(1, \infty)$. We then evaluate $f^{\prime}(x)$ at a test point in each interval.

Interval	Test Point, c	$f^{\prime}(c)$	Sign of $f^{\prime}(c)$
$\left(-\infty, \frac{1}{3}\right)$	0	$f^{\prime}(0)=1$	+
$\left(\frac{1}{3}, 1\right)$	$\frac{2}{3}$	$f^{\prime}\left(\frac{2}{3}\right)=-\frac{1}{3}$	-
$(1, \infty)$	2	$f^{\prime}(2)=5$	+

Since the sign of $f^{\prime}(x)$ changes from + to - at $x=\frac{1}{3}$, the First Derivative Test implies that $f\left(\frac{1}{3}\right)=\frac{4}{27}$ is a local maximum. Since the sign of $f^{\prime}(x)$ changes from - to + at $x=1$, the First Derivative Test implies that $f(1)=0$ is a local minimum. Furthermore, from the table we conclude that f is increasing on $\left(-\infty, \frac{1}{3}\right) \cup(1, \infty)$ because $f^{\prime}(x)>0$ for all $x \in\left(-\infty, \frac{1}{3}\right) \cup(1, \infty)$ and f is decreasing on $\left(\frac{1}{3}, 1\right)$ because $f^{\prime}(x)<0$ for all $x \in\left(\frac{1}{3}, 1\right)$.
(b) The inflection points of $f(x)$ are the points where $f^{\prime \prime}(x)$ changes sign. To determine these points we start by finding solutions to the equation $f^{\prime \prime}(x)=0$.

$$
\begin{aligned}
f^{\prime \prime}(x) & =0 \\
\left(3 x^{2}+4 x+1\right)^{\prime} & =0 \\
6 x-4 & =0 \\
x & =\frac{2}{3}
\end{aligned}
$$

We now split the domain of f into the two intervals $\left(-\infty, \frac{2}{3}\right)$ and $\left(\frac{2}{3}, \infty\right)$. We then evaluate $f^{\prime \prime}(x)$ at a test point in each interval to determine the intervals of concavity.

Interval	Test Point, c	$f^{\prime}(c)$	Sign of $f^{\prime}(c)$
$\left(-\infty, \frac{2}{3}\right)$	0	$f^{\prime \prime}(0)=-4$	-
$\left(\frac{2}{3}, \infty\right)$	1	$f^{\prime \prime}(1)=2$	+

Since there is a sign change in $f^{\prime \prime}(x)$ at $x=\frac{2}{3}$, the point $x=\frac{2}{3}$ is an inflection point. Furthermore, from the table we conclude that f is concave up on $\left(\frac{2}{3}, \infty\right)$ because $f^{\prime \prime}(x)>0$ for all $x \in\left(\frac{2}{3}, \infty\right)$ and f is concave down on $\left(-\infty, \frac{2}{3}\right)$ because $f^{\prime \prime}(x)<0$ for all $x \in\left(-\infty, \frac{2}{3}\right)$.

(c)

Math 180, Exam 2, Spring 2010
 Problem 4 Solution

4. Find the absolute minimum and the absolute maximum of $f(x)=x^{3} / 3-x^{2} / 2+2$ on the interval $[-1,2]$.

Solution: The minimum and maximum values of $f(x)$ will occur at a critical point in the interval $[-1,2]$ or at one of the endpoints. The critical points are the values of x for which either $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist. Since $f(x)$ is a polynomial, $f^{\prime}(x)$ exists for all $x \in \mathbb{R}$. Therefore, the only critical points are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(x^{3} / 3-x^{2} / 2+2\right)^{\prime} & =0 \\
x^{2}-x & =0 \\
x(x-1) & =0 \\
x=0, x & =1
\end{aligned}
$$

Both critical points $x=0$ and $x=1$ lie in $[-1,2]$. Therefore, we check the value of $f(x)$ at $x=-1,0,1$, and 2 .

$$
\begin{aligned}
f(-1) & =(-1)^{3} / 3-(-1)^{2} / 2+2=\frac{7}{6} \\
f(0) & =0^{3} / 3-0^{2} / 2+2=2 \\
f(1) & =1^{3} / 3-1^{2} / 2+2=\frac{11}{6} \\
f(2) & =2^{3} / 3-2^{2} / 2+2=\frac{8}{3}
\end{aligned}
$$

The minimum value of $f(x)$ on $[-1,2]$ is $\frac{7}{6}$ because it is the smallest of the above values of f. The maximum is $\frac{8}{3}$ because it is the largest.

Math 180, Exam 2, Spring 2010
 Problem 5 Solution

5. Design a rectangular box with square base (as in the diagram below) and a total surface area of 6 square feet that encloses the maximum possible volume. Determine both the dimensions of the box and the volume enclosed.

Solution: We begin by letting w be the length of one side of the base and h be the height of the box. The function we seek to minimize is the volume of the box.

Function: \quad Volume $=w^{2} h$
The constraint in the problem is that the total surface area is 6 . This gives us the equation
Constraint: $\quad 2 w^{2}+4 w h=6$
Solving this equation for h we get

$$
\begin{align*}
2 w^{2}+4 w h & =6 \\
w^{2}+2 w h & =3 \\
h & =\frac{3-w^{2}}{2 w} \tag{3}
\end{align*}
$$

We then plug this into the volume equation (1) to write the volume in terms of w only.

$$
\begin{align*}
\text { Volume } & =w^{2} h \\
\text { Volume } & =w^{2}\left(\frac{3-w^{2}}{2 w}\right) \\
f(w) & =\frac{3}{2} w-\frac{1}{2} w^{3} \tag{4}
\end{align*}
$$

We want to find the absolute maximum of $f(w)$ on the interval $(0, \sqrt{3}]$. We know that $w>0$ because w must be positive and nonzero (otherwise, the surface area would be 0 and it must be 6). It is possible that $h=0$ in which case the surface area constraint would give us $2 w^{2}+4 w(0)=6 \Rightarrow w^{2}=3 \quad \Rightarrow \quad w=\sqrt{3}$.

The absolute maximum of $f(w)$ will occur either at a critical point of $f(w)$ in $(0, \sqrt{3}]$, at $x=\sqrt{w}$, or it will not exist. The critical points of $f(w)$ are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(w) & =0 \\
\frac{3}{2}-\frac{3}{2} w^{2} & =0 \\
w^{2} & =1 \\
w & = \pm 1
\end{aligned}
$$

However, since $w=-1$ is outside $(0, \sqrt{3}]$, the only critical point is $w=1$. Plugging this into $f(w)$ we get:

$$
f(1)=\frac{3}{2}(1)-\frac{1}{2}(1)^{2}=1
$$

Evaluating $f(w)$ at $w=\sqrt{3}$ and taking the limit of $f(w)$ as w approaches $w=0$ we get:

$$
\begin{aligned}
\lim _{w \rightarrow 0^{+}} f(w) & =\lim _{w \rightarrow 0^{+}}\left(\frac{3}{2} w-\frac{1}{2} w^{3}\right)=0 \\
f(\sqrt{3}) & =\frac{3}{2}(\sqrt{3})-\frac{1}{2}(\sqrt{3})^{3}=0
\end{aligned}
$$

both of which are smaller than 1 . We conclude that the volume is an absolute maximum at $w=1$ and that the resulting volume is $1 \mathrm{ft}^{3}$. The height of the box when $w=1$ is found using equation (3).

$$
h=\frac{3-1^{2}}{2(1)}=1
$$

Math 180, Exam 2, Spring 2010 Problem 6 Solution

6. Compute the area of the region defined by $2 \leq x \leq 5,0 \leq y \leq x^{2}$.

Solution: The area of the region is given by the formula:

$$
\text { Area }=\int_{2}^{5} x^{2} d x
$$

Using the Fundamental Theorem of Calculus, Part I to evaluate the integral we get:

$$
\begin{aligned}
\text { Area } & =\int_{2}^{5} x^{2} d x \\
& =\left[\frac{1}{3} x^{3}\right]_{2}^{5} \\
& =\frac{1}{3} 5^{3}-\frac{1}{3} 2^{3} \\
& =39
\end{aligned}
$$

